Predicting users' next location allows to anticipate their future context, thus providing additional time to be ready for that context and react consequently. This work is focused on a set of LZ-based algorithms (LZ, LeZi Update and Active LeZi) capable of learning mobility patterns and estimating the next location with low resource needs, which makes it possible to execute them on mobile devices. The original algorithms have been divided into two phases, thus being possible to mix them and check which combination is the best one to obtain better prediction accuracy or lower resource consumption. To make such comparisons, a set of GSM-based mobility traces of 95 different users is considered. Finally, a prototype for mobile devices that integrates the predictors in a public transportation recommender system is described in order to show an example of how to take advantage of location prediction in an ubiquitous computing environment.
Location-based services (LBSs) flood mobile phones nowadays, but their use poses an evident privacy risk. The locations accompanying the LBS queries can be exploited by the LBS provider to build the user profile of visited locations, which might disclose sensitive data, such as work or home locations. The classic concept of entropy is widely used to evaluate privacy in these scenarios, where the information is represented as a sequence of independent samples of categorized data. However, since the LBS queries might be sent very frequently, location profiles can be improved by adding temporal dependencies, thus becoming mobility profiles, where location samples are not independent anymore and might disclose the user's mobility patterns. Since the time dimension is factored in, the classic entropy concept falls short of evaluating the real privacy level, which depends also on the time component. Therefore, we propose to extend the entropy-based privacy metric to the use of the entropy rate to evaluate mobility profiles. Then, two perturbative mechanisms are considered to preserve locations and mobility profiles under gradual utility constraints. We further use the proposed privacy metric and compare it to classic ones to evaluate both synthetic and real mobility profiles when the perturbative methods proposed are applied. The results prove the usefulness of the proposed metric for mobility profiles and the need Entropy 2015, 17 3914 for tailoring the perturbative methods to the features of mobility profiles in order to improve privacy without completely loosing utility.
Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.