Carbon nanotubes (CNTs) are receiving considerable attention in site-specific drug and nucleic acid delivery, photodynamic therapy, and photoacoustic molecular imaging. Despite these advances, nanotubes may activate the complement system (an integral part of innate immunity), which can induce clinically significant anaphylaxis. We demonstrate that single-walled CNTs coated with human serum albumin activate the complement system through C1q-mediated classical and the alternative pathways. Surface coating with methoxypoly(ethylene glycol)-based amphiphiles, which confers solubility and prolongs circulation profiles of CNTs, activates the complement system differently, depending on the amphiphile structure. CNTs with linear poly(ethylene glycol) amphiphiles trigger the lectin pathway of the complement through both L-ficolin and mannan-binding lectin recognition. The lectin pathway activation, however, did not trigger the amplification loop of the alternative pathway. An amphiphile with branched poly(ethylene glycol) architecture also activated the lectin pathway but only through L-ficolin recognition. Importantly, this mode of activation neither generated anaphylatoxins nor induced triggering of the effector arm of the complement system. These observations provide a major step toward nanomaterial surface modification with polymers that have the properties to significantly improve innate immunocompatibility by limiting the formation of complement C3 and C5 convertases.
Administration of liposome- and polymer-based clinical nanomedicines, as well as many other proposed multifunctional nanoparticles, often triggers hypersensitivity reactions without the involvement of IgE. These anaphylactic reactions are believed to be secondary to activation of the complement system, giving rise to the release of anaphylatoxins C3a and C5a that initiate a wide array of responses through their effect on mast cells, polymorphonuclear cells, platelets and monocytes. Additionally, the terminal complement C5b-9 complex induces platelet activation, thereby enhancing their procoagulant activity, and has the capacity to elicit non-lytic stimulatory responses from vascular endothelial cells. Here we discuss the molecular basis of complement activation by liposomes, including poly(ethylene glycol) coated vesicles, and other related lipid-based and phospholipid-poly(ethylene glycol) conjugate stabilized entities. We have further considered the role of these complement activating entities in experimental oncology since intra-tumoural complement activation is suggested to induce tumour growth and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.