A novel method for synthesis of high quality InN nanowires, at temperatures well above their decomposition temperature, has been demonstrated by utilizing controlled oxygen flow in the growth chamber. Detailed structural and chemical analyses indicate that the nanowires consist of pure InN, with no evidence of In2O3 detected by any of the characterization methods. It is proposed that the oxygen, pre-adsorbed on the Au catalyst surface, assists in accelerating the decomposition of NH3 at the growth temperature by providing high concentration of atomic nitrogen to assist in the growth, and prevent decomposition of the InN nanowires, without getting incorporated in them. The proposed role of oxygen is supported by improved material quality at higher oxygen flow rates.
Structural and elastic properties of InN nanowires (NWs) have been investigated. It was observed that the NWs bend spontaneously or upon meeting an obstacle in their growth path at angles that are multiples of 30°. Lithographically patterned trenches and barriers were found to influence the growth direction of the NWs, which depending on the angle of incidence, grew along the barrier or got deflected from it. Young's modulus of InN NWs, measured by three point bending method using a NW suspended across a trench, was found to be 266 GPa, which is in between the moduli of bulk and thin film InN. Overall, the InN NW properties were found to be very suitable for applications in nanoelectromechanical systems (NEMS) and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.