The beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste). The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP) lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD), SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC) and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/ mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation. Keywords: GP, soda-lime glass, glass waste, thermal insulator. Resumo O processo de beneficiamento de chapas por lapidação de vidro sodo-cálcico na indústria vidreira gera, por si só, um resíduo não aproveitado (rejeito). O rejeito deste material é encaminhado para aterros sanitários, ocasionando impactos ao meio ambiente. O presente trabalho objetivou caracterizar e avaliar o rejeito da lapidação de vidro sodo-cálcico (PV
The contact of diesel fuel with engine subsystems demands a good wear resistance. Lubricity is an important feature for integrity of injection system and the sulphur composites are primarily responsible for lubrication of the injector nozzle. Biodiesel is responsible for partially restoring the lubricity of diesel fuel that presents low levels of sulphur composites and, furthermore, it causes less pollution than diesel fuel. The lubricity is measured through the wear scar diameter following the ASTM D 975 standards. However, the friction and wear with light loads of micro/nanocomponents are highly dependent on surface interactions that can be evaluated by microscopy techniques. This study aimed to measure and to analyze the biodiesel lubricity and their blends (B5, B20) with diesel by observing the wear scars of discs using the scanning electronic microscopy (SEM), atomic force microscopy (AFM) and micro roughness techniques. The fuels performance was evaluated using HFRR tribometer. The tests conditions were based on standard ADTM D-6079-04. The coefficient of friction was measure during the test. After the test, the worn ball and disc were analyzed by SEM, AFM and profilometer. The results showed that the addition of biodiesel in diesel improve the tribological performance of fuel. Also, the just WSD value is not sufficient to evaluate the lubrication ability of a fuel. Analysis of the worn disc surfaces proved to be compatible with WSD number and also more sensitive to these kinds of fuels, showing mainly the form and intensity of the wear.
The current environmental scenario has required changes in fuel nature, in order to minimize the harmful effects caused by sulfur in diesel. However, reductions in sulfur content promote loss of its lubricity and consequently wear in the injection system of the diesel engine. This study aimed to investigate the influence of sulfur minimization on fuel lubricity and wear of metallic disks. The fuel tribological analysis was carried out in HFRR equipment in accordance with ASTM D 6079-04. The tested fuels were diesel oil with 50, 500 and 1800 ppm sulfur, and their blends of soybean and sunflower biodiesel (5, 20 and 100% in volume). The results showed an increase of disks wear with reduction of sulfur content when lubricated with pure diesel. This fact was decreased when biodiesel was added to all concentrations.
The purpose of this work was to study the influence of soybean biodiesel addition in ultra-low sulfur diesel (ULSD) on its tribological behavior under low-amplitude reciprocating conditions, simulating the operation of a fuel injector system. The methodology was divided into three parts: the first was the fuel preparation and its physicochemical characterization, where were studied four fuels (diesel, soybean biodiesel, and mixtures of them).The following step was the evaluation of the fuel tribological properties, using the high-frequency reciprocating rig (HFRR) test. These tests were carried out by steel ball-on-disk lubricated contact, on which the friction coefficient of friction (COF), the film percentage, and the wear scar diameter (WSD) were measured, according to ASTM D6079-11. In the end, the analysis of the damages presented on the worn disk surfaces was characterized by scanning electronic microscopy (SEM) and atomic force microscopy (AFM) techniques. Results showed that the addition of biodiesel to ULSD is an excellent option to restore the lubricating ability of this fuel. The biodiesel incorporation reduces the friction coefficient and improves the film formation. Besides, the evaluation of worn disk surfaces using SEM and AFM techniques showed that biodiesel avoids damages to surface through protective film formation and reduces the superficial roughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.