Blood pressure variability (BPV) and baroreflex dysfunction may contribute to end-organ damage process. We investigated the effects of baroreceptor deficit (10 weeks after sinoaortic denervation - SAD) on hemodynamic alterations, cardiac and pulmonary remodeling. Cardiac function and morphology of male Wistar intact rats (C) and SAD rats (SAD) (n=8/group) were assessed by echocardiography and collagen quantification. BP was directly recorded. Ventricular hypertrophy was quantified by the ratio of left ventricular weight (LVW) and right ventricular weight (RVW) to body weight (BW). BPV was quantified in the time and frequency domains. The atrial natriuretic peptide (ANP), alpha-skeletal actin (α-skelectal), collagen type I and type III genes mRNA expression were evaluated by RT-PCR. SAD did not change BP, but increased BPV (11±0.49 vs. 5±0.3 mmHg). As expected, baroreflex was reduced in SAD. Pulmonary artery acceleration time was reduced in SAD. In addition, SAD impaired diastolic function in both LV (6.8±0.26 vs. 5.02±0.21 mmHg) and RV (5.1±0.21 vs. 4.2±0.12 mmHg). SAD increased LVW/BW in 9% and RVW/BW in 20%, and augmented total collagen (3.8-fold in LV, 2.7-fold in RV, and 3.35-fold in pulmonary artery). Also, SAD increased type I (~6-fold) and III (~5-fold) collagen gene expression. Denervation increased ANP expression in LV (75%), in RV (74%) and increased α-skelectal expression in LV (300%) and in RV (546%). Baroreflex function impairment by SAD, despite not changing BP, induced important adjustments in cardiac structure and pulmonary hypertension. These changes may indicate that isolated baroreflex dysfunction can modulate target tissue damage.
OBJECTIVE:The aim of this study was to evaluate the role of angiotensin I, II and 1–7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation.METHODS:Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses.RESULTS:Hypertensive groups (controls and denervated) showed an increase on mean blood pressure compared with normotensive ones (controls and denervated). Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1–7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups.CONCLUSION:Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1–7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.