We report the use of the fluorescent dye CalciumOrange-5N (CaOr-5N) as a specific mitochondria Ca(2+) marker in enzymatically dissociated mouse FBD muscle fibers. Using laser scanning confocal microscopy and the dyes Mitotracker Green (MTG), di-8-ANEPPS and endoplasmic reticulum tracker green (ERTG), we determined the relative position of mitochondria, transverse tubules and sarcoplasmic reticulum in the sarcomere. Comparison with electron micrographies showed that mitochondria are mostly present at both sides of Z lines and near the triads located at the A-I band border. CaOr-5N fluorescence was mainly distributed in mitochondria, highly co-localised with MTG and basically excluded from the A band space. ERTG localised mostly between the two t-tubules present in each sarcomere. We studied the effect of the protonophore FCCP using CaOr-5N to measure mitochondrial Ca(2+) and JC-1 dye to measure mitochondria inner membrane potential (DeltaPsi(m)). After FCCP treatment, the CaOr-5N fluorescence diminished by about 33% in 80 s, while JC-1 fluorescence diminished by 36% in 200 s. Our results show the loss of Ca(2+) from mitochondria when DeltaPsi(m) is depolarised and demonstrate the usefulness of CaOr-5N to mark mitochondrial [Ca(2+)](m).
Eucalyptus tereticornis is a plant used in traditional medicine to control diabetes, but this effect has not been proved scientifically. Here, we demonstrated through in vitro assays that E. tereticornis extracts increase glucose uptake and inhibit their production in insulin-resistant C2C12 and HepG2 cells, respectively. Furthermore, in a nutritional model using diabetic mice, the administration of ethyl acetate extract of E. tereticornis reduced fasting glycaemia, improved tolerance to glucose, and reduced resistance to insulin. Likewise, this extract had anti-inflammatory effects in adipose tissue when compared to control diabetic mice. Via bioguided assays and sequential purification of the crude extract, a triterpenoid-rich fraction from ethyl acetate extracts was shown to be responsible for the biological activity. Similarly, we identified the main compound responsible for the antihyperglycemic activity in this extract. This study shows that triterpenes found in E. tereticornis extracts act as hypoglycemic/antidiabetic compounds and contribute to the understanding of their use in traditional medicine.
Enzymatically dissociated mouse FDB muscle fibers, loaded with Fura-2 AM, were used to study the effect of mitochondrial uncoupling on the capacitative Ca(2+) entry, SOCE. Sarcoplasmic reticulum (SR) Ca(2+) stores were depleted by repetitive exposures to high K(+) or 4-chloro-m-Cresol (4-CmC) in the absence of extracellular Ca(2+). SR Ca(2+) store replenishment was substantially reduced using 5 microM cyclopiazonic acid (CPA). Readmission of external Ca(2+) (5 mM) increased basal [Ca(2+)](i) under two modalities. In mode 1 [Ca(2+)](i) initially increased at a rate of 0.8 +/- 0.1 nM/s and later at a rate of 12.3 +/- 2.6 nM/s, reaching a final value of 477.8 +/- 36.8 nM in 215.7 +/- 25.9 s. In mode 2, [Ca(2+)](i) increased at a rate of 0.8 +/- 0.1 nM/s to a value of 204.9 +/- 20.6 nM in 185.4 +/- 21.1 s. FCCP, 2 microM, reduced this Ca(2+) entry. In nine FCCP-poisoned fibers, the initial rate of Ca(2+) increase was 0.34 +/- 0.1 nM/s (mean +/- SEM), reaching a plateau of 149.2 +/- 14.1 nM in 217 +/- 19 s. The results may likely be explained by the hypothesis that SOCE is inhibited by mitochondrial uncouplers, pointing to a possible mitochondrial role in its activation. Using time-scan confocal microscopy and the dyes CaOr-5N AM or Rhod-2 AM to label mitochondrial Ca(2+), we show that during depletion [Ca(2+)](mito) initially increases and later diminishes. Finally, we show that the increase in basal [Ca(2+)](i), associated with SOCE activation, diminishes upon external Na(+) withdrawal. Na(+) entry through the SOCE pathway and activation of the reversal of Na(+)/Ca(2+) exchanger could explain this SOCE modulation by Na(+).
Obesity is a major risk factor for type 2 diabetes mellitus development and is characterized by an abnormal expansion of adipose tissue and low-grade chronic infl ammation that contribute to insulin resistance. Although there are multiple treatments, most therapies can produce undesirable side effects and therefore, new and effective treatments with fewer side effects are necessary. Previously, we demonstrated that a natural extract from the leaves of Eucalyptus tereticornis (OBE100) has anti-infl ammatory, hypoglycemic and hypolipidemic activities. The major compounds identifi ed in OBE100 were three pentacyclic triterpenoids, ursolic acid, oleanolic acid, and ursolic acid lactone. Triterpenoids have shown multiples biological activities. This current study compared the biological effect produced by OBE100 with fi ve different reconstituted mixtures of these triterpenoids. Different cell lines were used to evaluate cytotoxicity, reactive oxygen species production, infl ammatory cytokine expression, glucose uptake induction, leptin and adiponectin expression, and lipid accumulation. OBE100 treatment was the most effi cacious and none of the formulated triterpenoid mixtures signifi cantly improved on this. Moreover, OBE100 was less toxic and reduced reactive oxygen species production. Our study showed that the proven benefi cial properties of triterpenoids may be enhanced due to the interaction with minor secondary metabolites present in the natural extract improving their anti-infl ammatory properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.