Scientific models invariably involve some degree of idealization, abstraction, or fictionalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illustrate this new framework by applying it to the case of Bohr's model of the atom, and conclude by drawing some distinctions between phenomenological models, explanatory models, and fictional models.
There is a growing recognition that fictions have a number of legitimate functions in science, even when it comes to scientific explanation. However, the question then arises, what distinguishes an explanatory fiction from a nonexplanatory one? Here I examine two cases—one in which there is a consensus in the scientific community that the fiction is explanatory and another in which the fiction is not explanatory. I shall show how my account of “model explanations” is able to explain this asymmetry, and argue that realism—of a more subtle form—does have a role in distinguishing explanatory from nonexplanatory fictions.
Classical mechanics and quantum mechanics are two of the most successful scientific theories ever discovered, and yet how they can describe the same world is far from clear: one theory is deterministic, the other indeterministic; one theory describes a world in which chaos is pervasive, the other a world in which chaos is absent. Focusing on the exciting field of 'quantum chaos', this book reveals that there is a subtle and complex relation between classical and quantum mechanics. It challenges the received view that classical and quantum mechanics are incommensurable, and revives another, largely forgotten tradition due to Niels Bohr and Paul Dirac. By artfully weaving together considerations from the history of science, philosophy of science, and contemporary physics, this book offers a new way of thinking about intertheory relations and scientific explanation. It will be of particular interest to historians and philosophers of science, philosophically-inclined physicists, and interested non-specialists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.