A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
Species abundance distributions (SADs) follow one of ecologyÕs oldest and most universal laws -every community shows a hollow curve or hyperbolic shape on a histogram with many rare species and just a few common species. Here, we review theoretical, empirical and statistical developments in the study of SADs. Several key points emerge. (i) Literally dozens of models have been proposed to explain the hollow curve. Unfortunately, very few models are ever rejected, primarily because few theories make any predictions beyond the hollow-curve SAD itself. (ii) Interesting work has been performed both empirically and theoretically, which goes beyond the hollow-curve prediction to provide a rich variety of information about how SADs behave. These include the study of SADs along environmental gradients and theories that integrate SADs with other biodiversity patterns. Central to this body of work is an effort to move beyond treating the SAD in isolation and to integrate the SAD into its ecological context to enable making many predictions. (iii) Moving forward will entail understanding how sampling and scale affect SADs and developing statistical tools for describing and comparing SADs. We are optimistic that SADs can provide significant insights into basic and applied ecological science.
Most studies examining continental-to-global patterns of species richness rely on the overlaying of extent-of-occurrence range maps. Because a species does not occur at all locations within its geographic range, range-map-derived data represent actual distributional patterns only at some relatively coarse and undefined resolution. With the increasing availability of high-resolution climate and land-cover data, broad-scale studies are increasingly likely to estimate richness at high resolutions. Because of the scale dependence of most ecological phenomena, a significant mismatch between the presumed and actual scale of ecological data may arise. This may affect conclusions regarding basic drivers of diversity and may lead to errors in the identification of diversity hotspots. Here, we examine avian range maps of 834 bird species in conjunction with geographically extensive survey data sets on two continents to determine the spatial resolutions at which range-map data actually characterize species occurrences and patterns of species richness. At resolutions less than 2°(Ϸ200 km), range maps overestimate the area of occupancy of individual species and mischaracterize spatial patterns of species richness, resulting in up to two-thirds of biodiversity hotspots being misidentified. The scale dependence of range-map accuracy poses clear limitations on broad-scale ecological analyses and conservation assessments. We suggest that range-map data contain less information than is generally assumed and provide guidance about the appropriate scale of their use.biodiversity ͉ birds ͉ geographic range ͉ range occupancy ͉ species richness pattern A growing number of studies is concerned with continentalto-global scale patterns of biodiversity (1-4) or summary patterns of species' ecological traits such as body size (5) and range size (6, 7). At similarly broad scales, many conservation studies are examining the richness of rare or threatened taxa (8-11) and their distribution in relation to existing reserve networks (12)(13)(14). Over such broad geographical extents, expertdrawn range maps (extent of occurrence maps) are typically the primary source of data on species distributions, and thus taxon richness is estimated by counting the number of species ranges that overlap each cell of an underlying grid system. Of course, it has been appreciated for decades that species do not occur at all locations throughout their range (7), and recent work (15)(16)(17) has shown that discrepancies may exist between richness patterns inferred from range maps and those inferred from survey data. This mismatch has been attributed to an inherent difference in the spatial scale at which range maps and surveys capture distributional information (15). However, although the spatial scale of surveys is typically explicit in the sampling methodology (e.g., 0.1-hectare Gentry forest plots, 40-km North American Breeding Bird Survey routes, and 0.25°ϫ 0.25°South African Bird Atlas cells), the actual scale at which range maps characterize the distribution ...
Species-energy theory is a commonly invoked theory predicting a positive relationship between species richness and available energy. The More Individuals Hypothesis (MIH) attempts to explain this pattern, and assumes that areas with greater food resources support more individuals, and that communities with more individuals include more species. Using a large dataset for North American birds, I tested these predictions of the MIH, and also examined the effect of habitat complexity on community structure. I found qualitative support for the relationships predicted by the MIH, however, the MIH alone was inadequate for fully explaining richness patterns. Communities in more productive sites had more individuals, but they also had more even relative abundance distributions such that a given number of individuals yielded a greater number of species. Richness and evenness were also higher in structurally complex forests compared to structurally more simple grasslands when controlling for available energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.