Na+, Ca2+- permeable acid-sensing ion channel 1a (ASIC1a) is involved in the pathophysiologic process of adult focal brain ischemia. However, little is known about its role in the pathogenesis of global cerebral ischemia or newborn hypoxia-ischemia (H-I). Here, using a newborn piglet model of asphyxia-induced cardiac arrest, we investigated the effect of ASIC1a-specific blocker psalmotoxin-1 on neuronal injury. During asphyxia and the first 30 mins of recovery, brain tissue pH fell below 7.0, the approximate activation pH of ASIC1a. Psalmotoxin-1 injection at 20 mins before hypoxia, but not at 20 mins of recovery, partially protected the striatonigral and striatopallidal neurons in putamen. Psalmotoxin-1 pretreatment largely attenuated the increased protein kinase A-dependent phosphorylation of DARPP-32 and N-methyl-D-aspartate (NMDA) receptor NR1 subunit and decreased nitrative and oxidative damage to proteins at 3 h of recovery. Pretreatment with NMDA receptor antagonist MK-801 also provided partial neuroprotection in putamen, and combined pretreatment with psalmotoxin-1 and MK-801 yielded additive neuroprotection. These results indicate that ASIC1a activation contributes to neuronal death in newborn putamen after H-I through mechanisms that may involve protein kinase A-dependent phosphorylation of NMDA receptor and nitrative and oxidative stress.
A number of structurally divergent proteins with J domains, called J proteins, interact with and activate the ATPase of Hsp70s, thereby harnessing the ATPase activity for conformational work on target proteins. The precise role of most mammalian J proteins remains undefined. In this paper, we demonstrate that transient expression of the J protein, Rdj2, in HEK 293 cells increased cellular cyclic adenosine monophosphate (cAMP) levels in the presence of the β-adrenergic agonist isoproterenol. In CNS-derived catecholaminergic neuronal cell line (CAD) neuroblastoma cells, expression of Rdj2 increased isoproterenol-stimulated phosphorylation of cAMP response element binding protein (CREB). Moreover, we have characterized the binding properties of Rdj2 and observed a direct interaction between Rdj2 and receptor-coupled trimeric GTP-binding proteins (G proteins). We further show that the composition of the Rdj2-chaperone complex and the cysteine string protein (CSPα)-chaperone complex, another J protein, is distinct. Our data demonstrate that Rdj2 modulates G protein signaling and further suggest that chaperoning G proteins is an emerging theme of the J protein network.
BackgroundThe pathophysiology of diabetic peripheral neuropathy (DPN) is complex and uncertain. A potential comorbidity in diabetes mellitus (DM) that may contribute to greater severity of DPN is a lipid disorder, such as with elevated cholesterol, low density lipoproteins or triglycerides. Oxidized low density lipoprotein (oxLDL) is a form of cholesterol that exerts direct toxic effects and contributes to pathogenicity through ligating a receptor called lectin-like receptor (LOX-1).MethodsWe examined plasma oxLDL levels in cohorts of patients with DPN with neuropathic pain (NeP), DPN patients without NeP, DM patients without DPN, patients with idiopathic peripheral neuropathy, and control subjects without DM or neuropathy. Our outcome measure was extent of oxLDL elevation, measured as fasting with Enzyme-Linked ImmunoSorbant Assay (ELISA) studies. Severity of diabetes was assessed using hemoglobin A1C measurements. Neuropathic severity was measured with the Utah Early Neuropathy Score (UENS). We hypothesized that DPN presence would be associated with oxLDL elevations.ResultsA total of 115 subjects (47 with DPN and NeP, 23 with DPN without NeP, 12 with diabetes only, 13 with idiopathic peripheral neuropathy, and 20 control subjects without diabetes or neuropathy) were studied. Duration of diabetes and diabetic glycemic measures were similar between populations with DM. Severity of DPN was similar between cohorts with DPN and NeP and DPN without NeP. Plasma oxLDL levels were similar between all cohorts, without any elevation in the presence of DM noted in any cohort with DM.ConclusionsoxLDL levels are not different in patients with DPN, and their lack of greater presence suggests that any pathogenic role in human DPN is likely limited.
BackgroundAlthough pregabalin therapy is beneficial for neuropathic pain (NeP) by targeting the CaVα2δ-1 subunit, its site of action is uncertain. Direct targeting of the central nervous system may be beneficial for the avoidance of systemic side effects.ResultsWe used intranasal, intrathecal, and near-nerve chamber forms of delivery of varying concentrations of pregabalin or saline delivered over 14 days in rat models of experimental diabetic peripheral neuropathy and spinal nerve ligation. As well, radiolabelled pregabalin was administered to determine localization with different deliveries. We evaluated tactile allodynia and thermal hyperalgesia at multiple time points, and then analyzed harvested nervous system tissues for molecular and immunohistochemical changes in CaVα2δ-1 protein expression. Both intrathecal and intranasal pregabalin administration at high concentrations relieved NeP behaviors, while near-nerve pregabalin delivery had no effect. NeP was associated with upregulation of CACNA2D1 mRNA and CaVα2δ-1 protein within peripheral nerve, dorsal root ganglia (DRG), and dorsal spinal cord, but not brain. Pregabalin's effect was limited to suppression of CaVα2δ-1 protein (but not CACNA2D1 mRNA) expression at the spinal dorsal horn in neuropathic pain states. Dorsal root ligation prevented CaVα2δ-1 protein trafficking anterograde from the dorsal root ganglia to the dorsal horn after neuropathic pain initiation.ConclusionsEither intranasal or intrathecal pregabalin relieves neuropathic pain behaviours, perhaps due to pregabalin's effect upon anterograde CaVα2δ-1 protein trafficking from the DRG to the dorsal horn. Intranasal delivery of agents such as pregabalin may be an attractive alternative to systemic therapy for management of neuropathic pain states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.