Eucalyptus globulus Labill stands out as one of the hardwood species produced in Europe with prominent mechanical properties, which is undergoing a growing interest in extending added value. The development of engineered wood products with this species and its application in timber structures involving numerical finite element simulations requires knowledge of the mechanical properties for the different orthotropic material directions. The aim of the present study is to determine the main mechanical properties of E. globulus from small clear specimens, necessary for the development of finite element models. The work provides experimental results on the ultimate capacity and modulus of elasticity considering different stresses: tension parallel and perpendicular to the grain, compression parallel and perpendicular to the grain (in radial and tangential directions), shear and longitudinal static bending. The work is complemented with experimental data on timber-to-timber friction coefficients for 0°, 45°, and 90° orientation angles, which are useful in the modeling of traditional joints. Very high values of ultimate stress and modulus of elasticity for the different mechanical properties were obtained, highlighting the great potential of this species for structural applications.
Assessing wood fracture behavior is essential in the design of structural timber elements and connections. This is particularly the case for connections with the possibility of brittle splitting failure. The numerical cohesive zone models that are used to simulate the fracture behavior of wood make it necessary to assume a cohesive law of the material that relates cohesive tractions and crack opening displacements ahead of the crack tip. This work addresses the determination of the fracture cohesive laws of Eucalyptus globulus, a hardwood species with great potential in timber engineering. This study centres on Mode I fracture loading for RL and TL crack propagation systems using Double Cantilever Beam tests. The Compliance-Based Beam Method is applied as the data reduction scheme in order to obtain the strain energy release rate from the load-displacement curves. The cohesive laws are determined by differentiating the relationship between strain energy release rate and crack tip opening displacement. The latter is measured by the digital image correlation technique. High strain energy release rates were obtained for this species, with no big differences between crack propagation systems. The difference between the crack systems is somewhat more pronounced in terms of maximum stress that determines the respective cohesive laws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.