Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids 1,2. To date, ferroptosis has been believed to be restrained only by the phospholipid hydroperoxide (PLOOH)-reducing enzyme glutathione peroxidase 4 (GPX4) 3,4 and radicaltrapping antioxidants (RTAs) 5,6. The factors which underlie a given cell type's sensitivity to ferroptosis 7 is, however, critical to understand the pathophysiological role of ferroptosis and how it may be exploited for cancer treatment. Although metabolic constraints 8 and phospholipid composition 9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been yet been identified that account for ferroptosis resistance. We undertook an expression cloning approach to identify genes able to complement GPX4 loss. These efforts uncovered the flavoprotein "apoptosis inducing factor mitochondria-associated 2 (AIFM2)" as a previously unrecognized anti-ferroptotic gene. AIFM2, hereafter renamed "ferroptosis-suppressor-protein 1" (FSP1), initially described as a pro-apoptotic gene 11 , confers an unprecedented protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that ferroptosis suppression by FSP1 is mediated via ubiquinone (CoQ10): its reduced form ubiquinol traps lipid peroxyl radicals that mediate lipid peroxidation, while FSP1 catalyses its regeneration by using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. Conclusively, FSP1/CoQ10/NAD(P)H exists as a standalone parallel system, which cooperates with GPX4 and glutathione (GSH) to suppress phospholipid peroxidation (pLPO) and ferroptosis. program NEUROPROTEKT (03VP04260), as well as the m4 Award provided by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi) to M.C., the Cancer Research UK
Cancer cells commonly have characteristic changes in metabolism. Cellular proliferation, a common feature of all cancers, requires fatty acids for synthesis of membranes and signaling molecules. Here, we provide a view of cancer cell metabolism from a lipid perspective, and we summarize evidence that limiting fatty acid availability can control cancer cell proliferation.
Lipids form a diverse group of water-insoluble molecules that include triacylglycerides, phosphoglycerides, sterols and sphingolipids. They play several important roles at cellular and organismal levels. Fatty acids are the major building blocks for the synthesis of triacylglycerides, which are mainly used for energy storage. Phosphoglycerides, together with sterols and sphingolipids, represent the major structural components of biological membranes. Lipids can also have important roles in signalling, functioning as second messengers and as hormones. There is increasing evidence that cancer cells show specific alterations in different aspects of lipid metabolism. These alterations can affect the availability of structural lipids for the synthesis of membranes, the synthesis and degradation of lipids that contribute to energy homeostasis and the abundance of lipids with signalling functions. Changes in lipid metabolism can affect numerous cellular processes, including cell growth, proliferation, differentiation and motility. This review will examine some of the alterations in lipid metabolism that have been reported in cancer, at both cellular and organismal levels, and discuss how they contribute to different aspects of tumourigenesis.
SummaryCell growth (accumulation of mass) needs to be coordinated with metabolic processes that are required for the synthesis of macromolecules. The PI3-kinase/Akt signaling pathway induces cell growth via activation of complex 1 of the target of rapamycin (TORC1). Here we show that Akt-dependent lipogenesis requires mTORC1 activity. Furthermore, nuclear accumulation of the mature form of the sterol responsive element binding protein (SREBP1) and expression of SREBP target genes was blocked by the mTORC1 inhibitor rapamycin. We also show that silencing of SREBP blocks Akt-dependent lipogenesis and attenuates the increase in cell size in response to Akt activation in vitro. Silencing of dSREBP in flies caused a reduction in cell and organ size and blocked the induction of cell growth by dPI3K. Our results suggest that the PI3K/Akt/TOR pathway regulates protein and lipid biosynthesis in an orchestrated manner and that both processes are required for cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.