Cancer cells commonly have characteristic changes in metabolism. Cellular proliferation, a common feature of all cancers, requires fatty acids for synthesis of membranes and signaling molecules. Here, we provide a view of cancer cell metabolism from a lipid perspective, and we summarize evidence that limiting fatty acid availability can control cancer cell proliferation.
Communication between organelles is an important feature of all eukaryotic cells. To uncover components involved in mitochondria/endoplasmic reticulum (ER) junctions, we screened for mutants that could be complemented by a synthetic protein designed to artificially tether the two organelles. We identified the Mmm1/Mdm10/Mdm12/Mdm34 complex as a molecular tether between ER and mitochondria. The tethering complex was composed of proteins resident of both ER and mitochondria. With the use of genome-wide mapping of genetic interactions, we showed that the components of the tethering complex were functionally connected to phospholipid biosynthesis and calcium-signaling genes. In mutant cells, phospholipid biosynthesis was impaired. The tethering complex localized to discrete foci, suggesting that discrete sites of close apposition between ER and mitochondria facilitate interorganelle calcium and phospholipid exchange.Eukaryotic cells evolved segregation of functions into separate organelles. Compartmentalization increases the efficiency of biochemical reactions by creating tailored chemical microenvironments, but also creates a need for communication and routes of metabolite exchange. Membrane lipids, for example, are primarily synthesized in the endoplasmic reticulum (ER) and distributed to other organelles. Many organelles exchange phospholipids with the ER via vesicular transport. In contrast, mitochondria are not connected to vesicular trafficking pathways, and many lipids of the inner and outer mitochondrial Other work has implicated ER-mitochondrial contact sites in Ca ++ transport between the ER and mitochondria (4-6), suggesting a mechanism that may exploit the formation of an encapsulated space at the contact sites, akin to that formed at neuronal or immunological synapses. Such a connection between the ER and the mitochondria might buffer and control cytosolic and mitochondrial Ca ++ concentrations (7). Several proteins have been implicated to participate in ER-mitochondria contacts, including the ER resident Ca ++ channel IP3 receptor, the mitochondrial voltage-dependent anion channel, the chaperones grp75 and sigma-1R, the sorting protein PACS-2, and the mitofusin Mfn2 (8-11).To explore a role for ER-mitochondrial junctions, we sought mutants in the yeast Saccharomyces cerevisiae, in which tethering between the two organelles was impaired. We reasoned that, if such contacts are important, defects in proteins that establish these interactions would be detrimental, yet perhaps could be suppressed by artificially tethering ER and mitochondria (Fig. 1A). We designed a synthetic ER-mitochondria tether ("ChiMERA" for construct helping in mitochondria-ER association) (Fig. 1B) consisting of an N-terminal mitochondrial signal sequence and transmembrane domain derived from Tom70, a central module composed of green fluorescent protein (GFP), and a C-terminal ER tail-anchor derived from Ubc6. The design was based on a similar chimeric protein that strengthened mitochondria-ER interactions (12). The GFP moiet...
Metabolic fingerprinting provides valuable information on the physiopathological states of cells and tissues. Traditional imaging mass spectrometry and magnetic resonance imaging are unable to probe the spatial-temporal dynamics of metabolites at the subcellular level due to either lack of spatial resolution or inability to perform live cell imaging. Here we report a complementary metabolic imaging technique that is based on hyperspectral stimulated Raman scattering (hsSRS). We demonstrated the use of hsSRS imaging in quantifying two major neutral lipids: cholesteryl ester and triacylglycerol in cells and tissues. Our imaging results revealed previously unknown changes of lipid composition associated with obesity and steatohepatitis. We further used stable-isotope labeling to trace the metabolic dynamics of fatty acids in live cells and live Caenorhabditis elegans with hsSRS imaging. We found that unsaturated fatty acid has preferential uptake into lipid storage while saturated fatty acid exhibits toxicity in hepatic cells. Simultaneous metabolic fingerprinting of deuterium-labeled saturated and unsaturated fatty acids in living C. elegans revealed that there is a lack of interaction between the two, unlike previously hypothesized. Our findings provide new approaches for metabolic tracing of neutral lipids and their precursors in living cells and organisms, and could potentially serve as a general approach for metabolic fingerprinting of other metabolites.
Caenorhabditis elegans gut granules are intestine specific lysosome-related organelles with birefringent and autofluorescent contents. We identified pgp-2, which encodes an ABC transporter, in screens for genes required for the proper formation of gut granules. pgp-2(-) embryos mislocalize birefringent material into the intestinal lumen and are lacking in acidified intestinal V-ATPase-containing compartments. Adults without pgp-2(+) function similarly lack organelles with gut granule characteristics. These cellular phenotypes indicate that pgp-2(-) animals are defective in gut granule biogenesis. Double mutant analysis suggests that pgp-2(+) functions in parallel with the AP-3 adaptor complex during gut granule formation. We find that pgp-2 is expressed in the intestine where it functions in gut granule biogenesis and that PGP-2 localizes to the gut granule membrane. These results support a direct role of an ABC transporter in regulating lysosome biogenesis. Previously, pgp-2(+) activity has been shown to be necessary for the accumulation of Nile Red-stained fat in C. elegans. We show that gut granules are sites of fat storage in C. elegans embryos and adults. Notably, levels of triacylglycerides are relatively normal in animals defective in the formation of gut granules. Our results provide an explanation for the loss of Nile Red-stained fat in pgp-2(-) animals as well as insight into the specialized function of this lysosome-related organelle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.