We propose a new measure to estimate the direction of information flux in multivariate time series from complex systems. This measure, based on the slope of the phase spectrum (Phase Slope Index) has invariance properties that are important for applications in real physical or biological systems: (a) it is strictly insensitive to mixtures of arbitrary independent sources, (b) it gives meaningful results even if the phase spectrum is not linear, and (c) it properly weights contributions from different frequencies. Simulations of a class of coupled multivariate random data show that for truly unidirectional information flow without additional noise contamination our measure detects the correct direction as good as the standard Granger causality. For random mixtures of independent sources Granger Causality erroneously yields highly significant results whereas our measure correctly becomes non-significant. An application of our novel method to EEG data (88 subjects in eyes-closed condition) reveals a strikingly clear front-to-back information flow in the vast majority of subjects and thus contributes to a better understanding of information processing in the brain.
The BCI competition IV stands in the tradition of prior BCI competitions that aim to provide high quality neuroscientific data for open access to the scientific community. As experienced already in prior competitions not only scientists from the narrow field of BCI compete, but scholars with a broad variety of backgrounds and nationalities. They include high specialists as well as students. The goals of all BCI competitions have always been to challenge with respect to novel paradigms and complex data. We report on the following challenges: (1) asynchronous data, (2) synthetic, (3) multi-class continuous data, (4) session-to-session transfer, (5) directionally modulated MEG, (6) finger movements recorded by ECoG. As after past competitions, our hope is that winning entries may enhance the analysis methods of future BCIs.
A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.