We report on a novel scheme to fabricate a simple, cheap, and compact tunable fiber laser. The tuning is realized by splicing a piece of single-mode fiber to one end of an active double-clad fiber, while the other end of the single-mode fiber is spliced to a 15 mm long section of 105/125 multimode fiber. The fluorescence signal entering into the multimode fiber will be reproduced as single images at periodic intervals along the propagation direction of the fiber. The length of the multimode fiber is chosen to be slightly shorter than the first re-imaging point, such that the signal coming out from the single mode fiber is obtained in free space, where a broadband mirror retroreflects the fluorescence signal. Since the position of the re-imaging point is wavelength dependent, different wavelengths will be imaged at different positions. Therefore, wavelength tuning is easily obtained by adjusting the distance between the broadband mirror and the multimode fiber facet end. Using this principle, the tunable fiber laser revealed a tunability of 8 nm, ranging from 1088-1097 nm, and an output power of 500 mW. The simplicity of the setup makes this a very cost-effective tunable fiber laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.