Effects of current density on nanostructure and light emitting properties of porous silicon (PS) samples were investigated by field emission scanning electron microscope (FE-SEM), gravimetric method, Raman and photoluminescence (PL) spectroscopy. FE-SEM images have shown that below 60 mA/cm 2 , macropore and mesopore arrays, exhibiting rough morphology, are formed together, whose pore diameter, pore depth and porosity are about 265-760 nm, 58-63 µm and 44-61%, respectively. However, PS samples prepared above 60 mA/cm 2 display smooth and straight macropore arrays, with pore diameter ranging from 900-1250 nm, porosity of 61-80% and pore depth between 63-69 µm. Raman analyses have shown that when the current density is increased from 10 mA/cm 2 to 100 mA/cm 2 , Raman peaks of PS samples shift to lower wavenumbers by comparison to crystalline silicon (c-Si). The highest Raman peak shift is found to be 3.2 cm −1 for PS sample, prepared at 90 mA/cm 2 , which has the smallest nanocrystallite size, about 5.2 nm. This sample also shows a pronounced PL, with the highest blue shifting, of about 12 nm. Nanocrystalline silicon, with the smallest nanocrystallite size, confirmed by our Raman analyses using microcrystal model (MCM), should be responsible for both the highest Raman peak shift and PL blue shift due to quantum confinement effect (QCE).
Silver nanostructures were obtained by using the electrodeposition method on n-type porous silicon (PSi) under different deposition times and concentrations of AgNO3 solutions. The analyses of the structural and photoluminescence properties of PSi/Ag were studied by SEM, XRD and photoluminescence spectroscopy. SEM analysis showed that the shape and size of Ag nanostructures significantly depend on the deposition time and concentration. It was found that spherical nanoparticles and thin Ag dendrites were obtained in short deposition times at 1 and 5 mM AgNO3 concentrations, whereas, Ag complex dendrite nanostructures formed in long deposition times. It was also found that only micro-sized Ag particles were formed at 10 mM. XRD results revealed that the degree of crystallization increases with increasing concentration. Photoluminescence analysis showed that the deposition time and concentration of AgNO3 remarkably affect the PL intensity of PSi/Ag samples. We determined a PL enhancement of ∼2.7 for the PSi/Ag deposited at 120 s for 1 mM AgNO3. The improved PL intensity of PSi/Ag nanostructures can be explained by the combination of quantum confinement and surface states. PL analyses also indicated that with increasing deposition time and AgNO3 concentrations, the PL intensity of PSi/Ag structures significantly decreases due to the auto-extinction phenomenon.
Copper (Cu) nanowire arrays embedded in anodic aluminium oxide films (AAO) on aluminium substrate have been synthesized by alternating current electrochemical deposition. Two-step anodization process has been performed to get the through-hole AAO with ordered nanochannels in 0.3[Formula: see text]M oxalic acids at DC voltages 30, 40, 50 and 60[Formula: see text]V, respectively. Structural characterization of the Cu nanowires has been analyzed by scanning electron microscopy (SEM) and X-ray diffraction (or) X-ray diffractometer (XRD). Our SEM analysis has revealed that the diameters of vertically oriented Cu nanowires are 15, 25, 45 and 60[Formula: see text]nm and the length of Cu nanowires having high packing density is about 15[Formula: see text][Formula: see text]m. XRD measurement has indicated that polycrystalline Cu nanowires prefer growth orientation along the (111) direction. Optical measurements show that reflection of the Cu nanowires/AAO on aluminium reduces with decreasing diameter of the Cu nanowires. This effect can be associated with increased light scattering from metal nanoparticles near their localized plasmon resonance frequency depending on the size and shape of the nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.