We have successfully demonstrated an integrated optical system for collecting the fluorescence from a trapped ion. The system, consisting of an array of transmissive, dielectric micro-optics and an optical fiber array, has been intimately incorporated into the ion-trapping chip without negatively impacting trapping performance. Epoxies, vacuum feedthrough, and optical component materials were carefully chosen so that they did not degrade the vacuum environment, and we have demonstrated light detection as well as ion trapping and shuttling behavior comparable to trapping chips without integrated optics, with no modification to the control voltages of the trapping chip.Integration of fluorescence collection optics with a microfabricated surface electrode ion trap
An all-optical implementation of a feed-forward artificial neural network is presented that uses self-lensing materials in which the index of refraction is irradiance dependent. Many of these types of material have ultrafast response times and permit both weighted connections and nonlinear neuron processing to be implemented with only thin material layers separated by free space. Both neuron processing and weighted interconnections emerge directly from the physical optics of the device. One creates virtual neurons and their connections simply by applying patterns of irradiance to thin layers of the nonlinear media. This is a result of a variation of the refractive-index profile of the self-lensing nonlinear media in response to the applied irradiance. An optical-backpropagation training method for this network is presented. The optical backpropagation is a training method that can be implemented potentially within the same optical device as the forward calculations, although several issues crucial to this po sibility remain to be addressed. Such a network was numerically simulated and trained to solve many benchmark classification problems, and some of these results are presented. To demonstrate the feasibility of building such a network, we also describe experimental work in the construction of an optical network trained to perform a logic XNOR function. This network, as a proof of concept, uses a relatively slow thermal nonlinear material with ~1-s response time.
Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform’s relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.