Injection of sulphate aerosols into the stratosphere following major volcanic eruptions alters global climate through the absorption and scattering of solar radiation. One proposed consequence is a decrease in North Atlantic Tropical Cyclone (TC) activity, as was observed following the El Chichón (1982) and Mount Pinatubo (1991) eruptions. We test this relationship using documentary and proxy reconstructions of major volcanic eruptions and TC frequency in the North Atlantic basin over the last three centuries. We find a consistent reduction in the number of TCs formed during the 3 years following major eruptions compared to the preceding 3 years, including after eruptions located at northern high latitudes. Our findings suggest that low‐latitude eruptions reduce Atlantic TC frequency by decreasing local sea surface temperatures, whereas the mechanisms for the decrease in TC frequency following high‐latitude eruptions are less clear and attribution is hampered by poor identification of these events.
Abstract. The "Unknown" eruption of 1808/1809 was the second most explosive SO2-rich volcanic eruption in the last two centuries, only eclipsed by the cataclysmic VEI 7 Tambora eruption in April 1815. However, no eyewitness accounts of the event, and therefore its location, or the atmospheric optical effects associated with its aerosols have been documented from historical records. Here we report on two meteorological observations dating from the end of 1808 that describe phenomena we attribute to volcanic-induced atmospheric effects caused by the Unknown eruption. The observations were made by two highly respected Latin American scientists. The first, Francisco José de Caldas, describes a stratospheric aerosol haze, a "transparent cloud that obstructs the sun's brilliance", that was visible over the city of Bogotá, Colombia, from 11 December 1808 to at least mid-February 1809. The second, made by physician José Hipólito Unanue in Lima, Peru, describes sunset after-glows (akin to well-documented examples known to be caused by stratospheric volcanic aerosols) from mid-December 1808 to February 1809. These two accounts provide direct evidence of a persistent stratospheric aerosol veil that spanned at least 2600 km into both Northern and Southern Hemispheres and establish that the source was a tropical volcano. Moreover, these observations confirm that the Unknown eruption, previously identified and tentatively assigned to February 1809 (±4 months) from analysis of ice core sulphate records, occurred in late November or early December 1808 (4 December 1808 ± 7 days). This date has important implications for the associated hemispheric climate impacts and temporal pattern of aerosol dispersal.
Abstract. The Unknown eruption of 1808/1809 was the second most explosive SO 2
Abstract. The management of hydrological extremes and impacts on society is inadequately understood because of the combination of short-term hydrological records, an equally short-term assessment of societal responses and the complex multi-directional relationships between the two over longer timescales. Rainfall seasonality and inter-annual variability on the Pacific coast of Central America is high due to the passage of the Inter Tropical Convergence Zone (ITCZ) and the El Niño-Southern Oscillation (ENSO). Here we reconstruct hydrological variability and demonstrate the potential for assessing societal impacts by drawing on documentary sources from the cities of Santiago de Guatemala (now Antigua Guatemala) and Guatemala de la Asunción (now Guatemala City) over the period from 1640 to 1945. City and municipal council meetings provide a rich source of information dating back to the beginning of Spanish colonisation in the 16th century. We use almost continuous sources from 1640 AD onwards, including > 190 volumes of Actas de Cabildo and Actas Municipales (minutes of meetings of the city and municipal councils) held by the Archivo Histórico de la Municipalidad de Antigua Guatemala (AHMAG) and the Archivo General de Centro América (AGCA) in Guatemala City. For this 305-year period (with the exception of a total of 11 years during which the books were either missing or damaged), information relating to Catholic rogation ceremonies and reports of flooding events and crop shortages were used to classify the annual rainy season (May to October) on a five-point scale from very wet to very dry. In total, 12 years of very wet conditions, 25 years of wetter than usual conditions, 34 years of drier conditions and 21 years of very dry conditions were recorded. An extended drier period from the 1640s to the 1740s was identified and two shorter periods (the 1820s and the 1840s) were dominated by dry conditions. Wetter conditions dominated the 1760s-1810s and possibly record more persistent La Niña conditions that are typically associated with higher precipitation over the Pacific coast of Central America. The 1640s-1740s dry period coincides with the Little Ice Age and the associated southward displacement of the ITCZ.
Abstract. The management of hydrological extremes and impacts on society is inadequately understood because of the combination of short-term hydrological records, an equally short-term assessment of societal responses and the complex multi-directional relationships between the two over longer timescales. Rainfall seasonality and interannual variability on the Pacific coast of Central America is high due to the passage of the Inter Tropical Convergence Zone (ITCZ) and large-scale 5 phenomena El Niño Southern Oscillation (ENSO). Here we reconstruct hydrological variability and the associated impacts drawing on documentary sources from the cities of Santiago de Guatemala (now Antigua Guatemala) and Guatemala de la Clim. Past Discuss.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.