Multiple sclerosis (MS) is a chronic demyelinating disease of unknown etiology in which tissue pathology suggests both immune-dependent attacks to oligodendroglia and primary oligodendrocyte demise. The endocannabinoid system has been crucially involved in the control of autoimmune demyelination and cannabinoid-based therapies exhibit therapeutic potential, but also limitations, in MS patients. In this context, growing evidence suggests that targeting the hydrolysis of the main endocannabinoid 2-arachidonoylglycerol (2-AG) may offer a more favorable benefit-to-risk balance in MS than existing cannabinoid medicines. Here we evaluated the modulation of endocannabinoid signaling and the therapeutic potential of targeting the 2-AG hydrolytic enzyme alpha/beta-hydrolase domain-containing 6 (ABHD6) in the cuprizone model of non-immune dependent demyelination. The concentrations of N-arachidonoylethanolamine (anandamide, AEA) and its congener N-palmitoylethanolamine (PEA) were reduced following 6 weeks of cuprizone feeding. Deregulation of AEA and PEA levels was not due to differences in the expression of the hydrolytic and biosynthetic enzymes fatty acid amide hydrolase and N-acylphosphatidylethanolamine-phospholipase D, respectively. Conversely, we measured elevated transcript levels of 2-AG hydrolytic enzymes monoacylglycerol lipase, ABHD6 and ABHD12 without changes in bulk 2-AG concentration. Upregulated CB and CB receptors expression, ascribed in part to microglia, was also detected in the brain of cuprizone-treated mice. Administration of an ABHD6 inhibitor partially attenuated myelin damage, astrogliosis and microglia/macrophage reactivity associated to cuprizone feeding. However, ABHD6 blockade was ineffective at engaging protective or differentiation promoting effects in oligodendrocyte cultures. These results show specific alterations of the endocannabinoid system and modest beneficial effects resulting from ABHD6 inactivation in a relevant model of primary demyelination.
The endocannabinoid system is associated with protective effects in multiple sclerosis (MS) that involve attenuated innate immune cell responses. Astrocytes and microglia are modulated by endocannabinoids and participate in the biosynthesis and metabolism of these compounds. However, the role of neuroglial cells as targets and mediators of endocannabinoid signaling in MS is poorly understood. Here we used a microfluidic RT-qPCR screen to assess changes in the expression of the main endocannabinoid signaling genes in astrocytes and microglia purified from female mice during the time-course of experimental autoimmune encephalomyelitis (EAE). We show that astrocytes and microglia upregulate the expression of genes encoding neurotoxic A1 and pro-inflammatory molecules at the acute disease with many of these transcripts remaining elevated during the recovery phase. Both cell populations exhibited an early onset decrease in the gene expression levels of 2-arachidonoylglycerol (2-AG) hydrolytic enzymes that persisted during EAE progression as well as cell-type-specific changes in the transcript levels for genes encoding cannabinoid receptors and molecules involved in anandamide (AEA) signaling. Our results demonstrate that astrocytes and microglia responses to autoimmune demyelination involve alterations in the expression of multiple endocannabinoid signaling-associated genes and suggest that this system may regulate the induction of neurotoxic and pro-inflammatory transcriptional programs in both cell types during MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.