In healthy individuals, deep inspiration produces bronchodilation and reduced airway responsiveness, which may be a response of the airway wall to mechanical stretch. The aim of this study was to examine the in vitro response of isolated human airways to the dynamic mechanical stretch associated with normal breathing. Human bronchial segments (n = 6) were acquired from patients without airflow obstruction undergoing lung resection for pulmonary neoplasms. The side branches were ligated and the airways were mounted in an organ bath chamber. Airway narrowing to cumulative concentrations of acetylcholine (3 × 10(-6) M to 3 × 10(-3) M) was measured under static conditions and in the presence of "tidal" oscillations with intermittent "deep inspiration." Respiratory maneuvers were simulated by varying transmural pressure using a motor-controlled syringe pump (tidal 5 to 10 cmH(2)O at 0.25 Hz, deep inspiration 5 to 30 cmH(2)O). Airway narrowing was determined from decreases in lumen volume. Tidal oscillation had no effect on airway responses to acetylcholine which was similar to those under static conditions. Deep inspiration in tidally oscillating, acetylcholine-contracted airways produced potent, transient (<1 min) bronchodilation, ranging from full reversal in airway narrowing at low acetylcholine concentrations to ∼50% reversal at the highest concentration. This resulted in a temporary reduction in maximal airway response (P < 0.001), without a change in sensitivity to acetylcholine. Our findings are that the mechanical stretch of human airways produced by physiological transmural pressures generated during deep inspiration produces bronchodilation and a transient reduction in airway responsiveness, which can explain the beneficial effects of deep inspiration in bronchial provocation testing in vivo.
The present study presents preliminary findings on how structural/functional abnormalities of the airway wall relate to excessive airway narrowing and reduced bronchodilatory response to deep inspiration (DI) in subjects with a history of asthma. Bronchial segments were acquired from subjects undergoing surgery, mostly to remove pulmonary neoplasms. Subjects reported prior doctor-diagnosed asthma (n = 5) or had no history of asthma (n = 8). In vitro airway narrowing in response to acetylcholine was assessed to determine maximal bronchoconstriction and sensitivity, under static conditions and during simulated tidal and DI maneuvers. Fixed airway segments were sectioned for measurement of airway wall dimensions, particularly the airway smooth muscle (ASM) layer. Airways from subjects with a history of asthma had increased ASM (P = 0.014), greater maximal airway narrowing under static conditions (P = 0.003), but no change in sensitivity. Maximal airway narrowing was positively correlated with the area of the ASM layer (r = 0.58, P = 0.039). In tidally oscillating airways, DI produced bronchodilation in airways from the control group (P = 0.0001) and the group with a history of asthma (P = 0.001). While bronchodilation to DI was reduced with increased airway narrowing (P = 0.02; r = -0.64)), when the level of airway narrowing was matched, there was no difference in magnitude of bronchodilation to DI between groups. Results suggest that greater ASM mass in asthma contributes to exaggerated airway narrowing in vivo. In comparison, the airway wall in asthma may have a normal response to mechanical stretch during DI. We propose that increased maximal airway narrowing and the reduced bronchodilatory response to DI in asthma are independent.
It is challenging to recover local optic axis orientation from samples probed with fiber-based polarization-sensitive optical coherence tomography (PS-OCT). In addition to the effect of preceding tissue layers, the transmission through fiber and system elements, and imperfect system alignment, need to be compensated. Here, we present a method to retrieve the required correction factors from measurements with depth-multiplexed PS-OCT, which accurately measures the full Jones matrix. The correction considers both retardation and diattenuation and is applied in the wavenumber domain, preserving the axial resolution of the system. The robustness of the method is validated by measuring a birefringence phantom with a misaligned system. Imaging ex-vivo lamb trachea and human bronchus demonstrates the utility of reconstructing the local optic axis orientation to assess smooth muscle, which is expected to be useful in the assessment of airway smooth muscle thickness in asthma, amongst other fiber-based applications.
Hyperinflated bronchi exhibit reduced bronchodilation to breathing and increased sensitivity to bronchoconstrictor stimuli. Findings suggest that hyperinflation may directly alter airway function by reducing the protective effects of DI and initiating contraction at low doses of contractile stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.