Every year in the world, sepsis occurs in 31.5 million people, and the number of deaths reaches 5.3 million per year. There are not enough studies that describe etiological structure of sepsis pathogens in different groups of population of the Republic of Kazakhstan. In this study, we have investigated difference of local sepsis etiology and antibiotic susceptibility among children and adults. A total 200 blood samples were examined using the standard and express method of identification of bloodstream pathogens. The determination of antimicrobial sensitivity was carried out by the disc-diffusion method according to CLSI guidelines. Overall, 23/90 (25.5%) positive blood cultures were isolated from adult patients and 43/110 (39%) from pediatric patients. It was found that children are statistically more often affected with bacterial bloodstream infection than adults ( p < 0.05 ). The Gram-positive bacteria are the leading cause of sepsis in both groups: S. epidermidis (35.5%) in pediatric patients and S. aureus (21.7%) in adults. However, statistical significance was detected in pediatric patients ( p < 0.05 ). The number of resistant strains of S. epidermidis (MRSE) in the group of children was 66.7%, while in adults, all S. epidermidis was resistant to azithromycin and cefoxitin (MRSE). S. aureus strains from adult patients and children had a similar picture of antibiotic patterns. The proportion of MRSA in pediatric patients was 16, 6%, and in adult patients, 20%. Enterobacterales (39%) were the second cause of sepsis in adult patients. 62.5% of Enterobacterales strains isolated from adults were phenotypically identified as ESBL, while in pediatric patients, 25% of ESBL producers were isolated. We have noted the resistance to antibiotics that are prescribed according to protocols of treatment of the Republic of Kazakhstan in the strains isolated from the patient’s blood.
Our study was carried out to characterize respiratory tract microbiota in patients with “COVID-like pneumonia” in Kazakhstan and analyze differences between COVID-19 positive and negative groups. Sputum samples were collected from hospitalized patients, ≥18 years old, in the three cities in Kazakhstan with the highest COVID-19 burden in July 2020. Isolates were identified by MALDI-TOF MS. Susceptibility testing was performed by disk diffusion. We used SPSS 26 and MedCalc 19 for statistical analysis. Among 209 patients with pneumonia, the median age was 62 years and 55% were male. RT-PCR-confirmed SARS-CoV-2 cases were found in 40% of patients, and 46% had a bacterial co-infection. Co-infection was not associated with SARS-CoV-2 RT-PCR test results, but antibiotic use was. The most frequent bacteria were Klebsiella pneumoniae (23%), Escherichia coli (12%), and Acinetobacter baumannii (11%). Notably, 68% of Klebsiella pneumoniae had phenotypic evidence of extended-spectrum beta-lactamases in disk diffusion assays, 87% of Acinetobacter baumannii exhibited resistance to beta-lactams, and >50% of E. coli strains had evidence of ESBL production and 64% were resistant to fluoroquinolones. Patients with a bacterial co-infection had a higher proportion of severe disease than those without a co-infection. The results reinforce the importance of using appropriate targeted antibiotics and effective infection control practices to prevent the spread of resistant nosocomial infections.
The aim of this study was to determine the prevalence of A. baumannii antibiotic-resistant strains in Kazakhstan and to characterize genotypes related to epidemic “high-risk” clones. Two hundred and twenty four A. baumannii isolates from four cities of Kazakhstan in 2011–2019 were studied. Antibiotic susceptibility testing was performed by using broth microdilutions method according to EUCAST (v 11.0) recommendations. The presence of blaOXA-23-like, blaOXA-24/40-like, blaOXA-58-like, blaVIM, blaIMP, and blaNDM genes was determined by PCR. Genotyping was performed using high-throughput real-time PCR detection of 21 SNPs at 10 chromosomal loci used in existing MLST schemes. Resistance rates to imipenem, meropenem, amikacin, gentamicin, and ciprofloxacin were 81.3%, 78.6%, 79.9%, 65.2%, and 89.3%, respectively. No colistin resistant isolates were detected. The values of the MIC 50% and the MIC 90% of tigecycline were 0.125 mg/L, only four isolates (1.8%) had the ECOFF value >0.5 mg/L. The presence of acquired carbapenemase genes was found in 82.2% strains, including blaOXA-23-like (78.6%) or blaOXA-58-like (3.6%) genes. The spreading of carbapenem resistant A. baumannii strains in Kazakhstan was associated with epidemic “high-risk” clonal groups, predominantly, CG208(92)OXF/CG2PAS (80.8%) and less often CG231(109)OXF/CG1PAS (1.8%).
Understanding immunoregulation in newborns can help to determine the pathophysiology of neonatal sepsis and will contribute to improve the diagnosis, prognosis, and treatment and remains an urgent and unmet medical need to understand hyperinflammation or hypoinflammation associated with sepsis in newborns. This study included infants (up to 4 days old). The “sepsis” criteria was a positive blood culture. C-reactive protein demonstrates a strong dependence on the pathogen etiology. Therefore, its diagnostic odds ratio in Gram-positive bacteremia was 2.7 and the sensitivity was 45%, while Gram-negative was 15.0 and 81.8%, respectively. A neutrophil-lymphocyte ratio above 1 and thrombocytopenia below 50 ∗ 109 cells/L generally do not depend on the type of pathogen and have a specificity of 95%; however, the sensitivity of these markers is low. nCD64 demonstrated good analytical performance and was equally discriminated in both Gram (+) and Gram (−) cultures. The sensitivity was 87.5–89%, and the specificity was 65%. The HLA-DR and programmed cell death protein study found that activation-deactivation processes in systemic infection is different at points of application depending on the type of pathogen: Gram-positive infections showed various ways of activation of monocytes (by reducing suppressive signals) and lymphocytes (an increase in activation signals), and Gram-negative pathogens were most commonly involved in suppressing monocytic activation. Thus, the difference in the bacteremia model can partially explain the problems with the high variability of immunologic markers in neonatal sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.