AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca 2+ -impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.
There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 ( CHD3 ), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.
BackgroundDe novo missense variants in CDK13 have been described as the cause of syndromic congenital heart defects in seven individuals ascertained from a large congenital cardiovascular malformations cohort. We aimed to further define the phenotypic and molecular spectrum of this newly described disorder.MethodsTo minimise ascertainment bias, we recruited nine additional individuals with CDK13 pathogenic variants from clinical and research exome laboratory sequencing cohorts. Each individual underwent dysmorphology exam and comprehensive medical history review.ResultsWe demonstrate greater than expected phenotypic heterogeneity, including 33% (3/9) of individuals without structural heart disease on echocardiogram. There was a high penetrance for a unique constellation of facial dysmorphism and global developmental delay, as well as less frequently seen renal and sacral anomalies. Two individuals had novel CDK13 variants (p.Asn842Asp, p.Lys734Glu), while the remaining seven unrelated individuals had a recurrent, previously published p.Asn842Ser variant. Summary of all variants published to date demonstrates apparent restriction of pathogenic variants to the protein kinase domain with clustering in the ATP and magnesium binding sites.ConclusionsHere we provide detailed phenotypic and molecular characterisation of individuals with pathogenic variants in CDK13 and propose management guidelines based upon the estimated prevalence of anomalies identified.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-017-0463-8) contains supplementary material, which is available to authorized users.
Neurodevelopmental disorders (NDDs), including global developmental delay (GDD), intellectual disability (ID), and autism spectrum disorder (ASD), represent a continuum of developmental brain dysfunction. Although the etiology of NDD is heterogeneous, genetic variation represents the largest contribution, strongly supporting the recommendation for genetic evaluation in individuals with GDD/ID and ASD. Technological advances now allow for a specific genetic diagnosis to be identified in a substantial portion of affected individuals. This information has important ramifications for treatment, prognosis, and recurrence risk, as well as psychological and social benefits for the family. Genetic counseling is a vital service to enable patients and their families to understand and adapt to the genetic contribution to NDDs. As the demand for genetic evaluation for NDDs increases, genetic counselors will have a predominant role in the ongoing evaluation of NDDs, especially as identification of genetic etiologies has the potential to lead to targeted treatments for NDDs in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.