For individuals who have experienced tooth loss, dental implants are an important treatment option for oral reconstruction. For these patients, alveolar bone augmentation and acceleration of osseointegration optimize implant stability. Traditional oral surgery often requires invasive procedures, which can result in prolonged treatment time and associated morbidity. It has been previously shown that chemical vapor deposition (CVD) polymerization of functionalized [2.2]paracyclophanes can be used to anchor gene encoding vectors onto biomaterial surfaces and local delivery of a bone morphogenetic protein (BMP)‐encoding vector can increase alveolar bone volume and density in vivo. This study is the first to combine the use of CVD technology and BMP gene delivery on titanium for the promotion of bone regeneration and bone to implant contact in vivo. BMP‐7 tethered to titanium surface enhances osteoblast cell differentiation and alkaline phosphatase activity in vitro and increases alveolar bone regeneration and % bone to implant contact similar to using high doses of exogenously applied BMP‐7 in vivo. The use of this innovative gene delivery strategy on implant surfaces offers an alternative treatment option for targeted alveolar bone reconstruction.
Focal therapies such as hyperthermia have been successfully used to treat solid localized tumors; however, they are not easily applied to cancers that may present in a disseminated form such as ovarian cancer. To address this need, iron oxide (IO) particles were incorporated into microporous poly(caprolactone) scaffolds previously shown to recruit disseminating cancer cells. Under an alternating magnetic field, IO-loaded scaffolds exhibited heating and killed ID8 ovarian cancer cells in vitro. After implantation in the intraperitoneal cavity of mice, IO-loaded scaffolds became infiltrated with tissue after 6-7 weeks, and infiltrated cells were successfully treated ex vivo. Finally, IO-loaded scaffolds noninvasively killed infiltrated cells in vivo as evidenced by decreases in number of nuclei. These studies demonstrate the promising use of IO-loaded scaffolds as a tool for noninvasive hyperthermia, which could be an innovative modality for treatment of disseminated cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.