Oxysterols are oxidized derivatives of cholesterol, both endogenous and exogenous.They have been implicated in numerous pathologies, including cancer. In addition to their roles in carcinogenesis, proliferation, migration, apoptosis, and multiple signalling pathways, they have been shown to modulate cancer therapy. They are known to affect therapy of hormonally positive breast cancer through modulating oestrogen receptor activity. Oxysterols have also been shown in various in vitro models to influence efficacy of chemotherapeutics, such as doxorubicin, vincristine, cisplatin, 5-fluorouracil, and others. Their effects on the immune system should also be considered in immunotherapy. Selective anti-cancer cytotoxic properties of some oxysterols make them candidates for new therapeutic molecules. Finally, differences in oxysterol levels in blood of cancer patients in different stages or versus healthy controls, and in tumour versus non-tumour tissues, show potential of oxysterols as biomarkers for cancer management and patient stratification for optimization of therapy.
The main problem precluding successful therapy with conventional taxanes is de novo or acquired resistance to taxanes. Therefore, novel experimental taxane derivatives (Stony Brook taxanes; SB-Ts) are synthesized and tested as potential drugs against resistant solid tumors. Recently, we reported alterations in ABCC3, CPS1, and TRIP6 gene expression in a breast cancer cell line resistant to paclitaxel. The present study aimed to investigate gene expression changes of these three candidate molecules in the highly resistant ovarian carcinoma cells in vitro and corresponding in vivo models treated with paclitaxel and new experimental Stony Brook taxanes of the third generation (SB-T-121605 and SB-T-121606). We also addressed their prognostic meaning in ovarian carcinoma patients treated with taxanes. We estimated and observed changes in mRNA and protein profiles of ABCC3, CPS1, and TRIP6 in resistant and sensitive ovarian cancer cells and after the treatment of resistant ovarian cancer models with paclitaxel and Stony Brook taxanes in vitro and in vivo. Combining Stony Brook taxanes with paclitaxel caused downregulation of CPS1 in the paclitaxel-resistant mouse xenograft tumor model in vivo. Moreover, CPS1 overexpression seems to play a role of a prognostic biomarker of epithelial ovarian carcinoma patients’ poor survival. ABCC3 was overexpressed in EOC tumors, but after the treatment with taxanes, its up-regulation disappeared. Based on our results, we can suggest ABCC3 and CPS1 for further investigations as potential therapeutic targets in human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.