Mitochondria are arbiters in the fragile balance between cell life and death. These organelles present an intricate membrane system, with a peculiar lipid composition and displaying transverse as well as lateral asymmetry. Some lipids are synthesized inside mitochondria, while others have to be imported or acquired in the form of precursors. Here, we review different processes, including external interventions (e.g., diet) and a range of biological events (apoptosis, disease and aging), which may result in alterations of mitochondrial membrane lipid content. Cardiolipin, the mitochondria lipid trademark, whose biosynthetic pathway is highly regulated, will deserve special attention in this review. The modulation of mitochondrial membrane lipid composition, especially by diet, as a therapeutic strategy for the treatment of some pathologies will be also addressed.
Cationic liposomes have been proposed as biocompatible gene delivery vectors, able to overcome the barriers imposed by cell membranes. Besides lipids, other surfactant molecules have been successfully used in the composition of gene carriers. In the present work, we used a Gemini surfactant, represented by the general structure [C(14)H(29)(CH(3))(2)N(+)(CH(2))(2)N(+)(CH(3))(2)C(14)H(29)]2Br(-) and herein designated 14-2-14, to prepare cationic gene carriers, both as the sole component and in combination with neutral helper lipids, cholesterol and DOPE. The effectiveness of three Gemini-based formulations, namely neat 14-2-14, 14-2-14:Chol (1:1 molar ratio) and 14-2-14:Chol:DOPE (2:1:1 molar ratio), to mediate gene delivery was evaluated in DNA mixtures of +/- charge ratios ranging from 1/1 to 12/1. After ruling out cytotoxicity as responsible for the differences observed in the transfection competence, structural and physical properties of the vector were investigated, using several techniques. The size and surface charge density (zeta potential) of surfactant-based structures were determined by conventional techniques and the thermotropic behaviour of aqueous dispersions of surfactant/lipid/DNA formulations was monitored by fluorescence polarization of DPH and DPH-PA probes. The capacity of lipoplexes to interact with membrane-mimicking lipid bilayers was evaluated, using the PicoGreen assay and a FRET technique. Our data indicate inefficiency of the neat 14-2-14 formulation for gene delivery, which could result from the large dimensions of the particles and/or from its relative incompetence to release DNA upon interaction with anionic lipids. The addition of cholesterol or cholesterol and DOPE conferred to Gemini-based gene carrier transfection activity at specific ranges of +/- charge ratios. Fluorescence polarization data suggest that an order parameter within a specific range was apparently needed for complexes to display maximal transfection efficiency. The transfection-competent formulations showed to be efficiently destabilized by interaction with different anionic and zwitterionic bilayers, including those containing PS and cardiolipin. These data are discussed in terms of the potential of these formulations to address different intracellular targets.
Gemini surfactants possess interesting interfacial and aggregation properties that have prompted comprehensive studies and successful applications in a wide variety of fields. However, a systematic study on the effect of gemini tail and spacer length upon the organization of lipid membranes has not been presented so far. In this study, we analyze the action of dicationic alkylammonium bromide gemini surfactants on DPPC liposomes, the latter employed as a model of lipid membranes. Differential scanning calorimetry results indicate that the surfactants presenting shorter tails (12 carbons) induce a decrease in the overall order of the bilayer, while those with longer tails (16 and 18 carbons) lead to the formation of more ordered structures. The respective influence on the degree of lipid order transverse to the bilayer was additionally studied resorting to a detailed fluorescence anisotropy study. In this case, it is observed that among the shorter tail surfactants, those with longer spacers (6 and 10 carbons) are responsible for a more pronounced disrupting effect upon the membrane, especially close to the lipid polar heads. Molecular dynamics simulation supports the most important findings and provides insight into the mechanism that governs this interaction. Accordingly, the interplay between tail and spacer length accounts for the differential vertical positioning of the gemini molecules and atom-density in the core of the bilayer, that provide a rationale for the experimental observations.
Partition and localization of C60 and its derivative C60(OH)18-22 in lipid membranes and their impact on mitochondrial activity were studied, attempting to correlate those events with fullerene characteristics (size, surface chemistry, and surface charge). Fluorescence quenching studies suggested that C60(OH)18-22 preferentially populated the outer regions of the bilayer, whereas C60 preferred to localize in deeper regions of the bilayer. Partition coefficient values indicated that C60 exhibited higher affinity for dipalmitoylphosphatidylcholine and mitochondrial membranes than C60(OH)18-22. Both fullerenes affected the mitochondrial function, but the inhibitory effects promoted by C60 were more pronounced than those induced by C60(OH)18-22 (up to 20 nmol/mg of mitochondrial protein). State 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations are inhibited by both fullerenes when glutamate/malate or succinate was used as substrate. Phosphorylation system and electron transport chain of mitochondria are affected by both fullerenes, but only C60 increased the inner mitochondrial membrane permeability to protons, suggesting perturbations in the structure and dynamics of that membrane. At concentrations of C60(OH)18-22 above 20 nmol/mg of mitochondrial protein, the activity of FoF1-ATP synthase was also decreased. The evaluation of transmembrane potential showed that the mitochondria phosphorylation cycle decreased upon adenosine diphosphate addition with increasing fullerenes concentration and the time of the repolarization phase increased as a function of C60(OH)18-22 concentration. Our results suggest that the balance between hydrophilicity and hydrophobicity resulting from the surface chemistry of fullerene nanoparticles, rather than the cluster size or the surface charge acquired by fullerenes in water, influences their membrane interactions and consequently their effects on mitochondrial bioenergetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.