Background: Knockdown resistance (kdr) is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques.
Mosquitoes (Diptera: Culicidae) of the Anopheles (Cellia) Myzomyia Series are important malaria vectors in Africa, India and Southeast Asia. Among 10 named species of Myzomyia known from the Oriental Region, seven form the An. minimus group. Even for expert taxonomists, the adults of these species remain difficult to identify morphologically. For technical staff of malaria control programmes, confusion may extend to misidentification of species that are not formally within the minimus group. For identification of specimens from Indochina (Cambodia, Laos, Vietnam), we describe a multiplex polymerase chain reaction (PCR) assay, based on rDNA internal transcribed spacer 2 (ITS2) sequences, that employs a cocktail of primers to identify An. minimus Theobald sibling species A and C (sensu; Green et al., 1990) and three other species in the An. minimus group (An. aconitus Dönitz, An. pampanai Büttiker & Beales, An. varuna Iyengar), as well as An. jeyporiensis James, also belonging to the Myzomyia Series. As the test is DNA-based, it can be applied to all life stages of these mosquitoes for ecological investigations and vector incrimination studies. This PCR assay is simpler, quicker, cheaper and more readily interpreted than previous assays.
Bioassays for insecticide resistance in adult mosquitoes were conducted on samples of Anopheles gambiae Giles s.l. (Diptera: Culicidae) species collected as larvae from breeding sites in the lower Shire Valley, Malawi. The results indicate full susceptibility to permethrin, deltamethrin and malathion, but reduced susceptibility to DDT in one sample from Thom (LT(50) of 8.39 min for females and 25.09 min for males). Polymerase chain reaction-based species identification of the mosquitoes assayed revealed a mixture of Anopheles arabiensis Patton and Anopheles quadriannulatus (Theobold). The LT(50) did not differ significantly between species. Genotyping of the L1014F and L1014S kdr alleles showed all mosquito specimens to be homozygous wild type; thus the reduced susceptibility detected is not attributable to target site insensitivity and instead is likely to be metabolic in nature. Anopheles quadriannulatus is characteristically zoophagic and exophilic. Indeed, of 82 Anopheles collected through knockdown collections within dwellings, only one was An. quadriannulatus and the rest were An. arabiensis. They are unlikely, therefore, to have been exposed to selection pressure arising from insecticide-treated net usage or to DDT indoor residual spraying. Therefore, it is suggested that this example of reduced susceptibility to DDT in An. quadriannulatus reflects selection in the larval stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.