Viruses use IRES sequences within their RNA to hijack translation machinery and thereby rapidly replicate in host cells. While this process has been extensively studied in bulk assays, the dynamics of hijacking at the single-molecule level remain unexplored in living cells.To achieve this, we developed a bicistronic biosensor encoding complementary repeat epitopes in two ORFs, one translated in a Cap-dependent manner and the other translated in an IRESmediated manner. Using a pair of complementary probes that bind the epitopes cotranslationally, our biosensor lights up in different colors depending on which ORF is being translated. In combination with single-molecule tracking and computational modeling, we measured the relative kinetics of Cap versus IRES translation and show: (1) Two nonoverlapping ORFs can be simultaneously translated within a single mRNA; (2) EMCV IRESmediated translation sites recruit ribosomes less efficiently than Cap-dependent translation sites .
Many live-cell imaging experiments use exogenous particles (e.g., peptides, antibodies, beads) to label or function within cells. However, introducing proteins into a cell across its membrane is difficult. The limited selection of current methods struggles with low efficiency, requires expensive and technically demanding equipment, or functions within narrow parameters. Here, we describe a relatively simple and costeffective technique for loading DNA, RNA, and proteins into live human cells. Bead loading induces a temporary mechanical disruption to the cell membrane, allowing macromolecules to enter adherent, live mammalian cells. At less than 0.01 USD per experiment, bead loading is the least expensive cell loading method available. Moreover, bead loading does not substantially stress cells or impact their viability or proliferation. This manuscript describes the steps of the bead loading procedure, adaptations, variations, and technical limitations. This methodology is especially suited for live-cell imaging but provides a practical solution for other applications requiring the introduction of proteins, beads, RNA, or plasmids into living, adherent mammalian cells.
Viruses use IRES sequences within their RNA to hijack translation machinery and thereby rapidly replicate in host cells. While this process has been extensively studied in bulk assays, the dynamics of hijacking at the single-molecule level remain unexplored in living cells.To achieve this, we developed a bicistronic biosensor encoding complementary repeat epitopes in two ORFs, one translated in a Cap-dependent manner and the other translated in an IRESmediated manner. Using a pair of complementary probes that bind the epitopes cotranslationally, our biosensor lights up in different colors depending on which ORF is being translated. In combination with single-molecule tracking and computational modeling, we measured the relative kinetics of Cap versus IRES translation and show: (1) Two nonoverlapping ORFs can be simultaneously translated within a single mRNA; (2) EMCV IRESmediated translation sites recruit ribosomes less efficiently than Cap-dependent translation sites but are otherwise nearly indistinguishable, having similar mobilities, sizes, spatial distributions, and ribosomal initiation and elongation rates; (3) Both Cap-dependent and IRES-mediated ribosomes tend to stretch out translation sites; (4) Although the IRES recruits two to three times fewer ribosomes than the Cap in normal conditions, the balance shifts dramatically in favor of the IRES during oxidative and ER stresses that mimic viral infection; and (5) Translation of the IRES is enhanced by translation of the Cap, demonstrating upstream translation can positively impact the downstream translation of a non-overlapping ORF. With the ability to simultaneously quantify two distinct translation mechanisms in physiologically relevant live-cell environments, we anticipate bicistronic biosensors like the one we developed here will become powerful new tools to dissect both canonical and non-canonical translation dynamics with single-molecule precision.( | )) < 60 were accepted). The resulting parameter sets were then used to estimate standard deviations of the parameters as shown in Table 1. Computational Implementation and CodesAll simulations were performed on the W. M. Keck High Performance Computing Cluster at Colorado State University. All codes and required data will be available in the following repository:https://github.com/MunskyGroup/CAP_IRES.
Many live-cell imaging experiments use exogenous particles (e.g., peptides, antibodies, beads) to label or function within cells. However, introducing proteins into a cell across its membrane is difficult. The limited selection of current methods struggles with low efficiency, requires expensive and technically demanding equipment, or functions within narrow parameters. Here, we describe a relatively simple and costeffective technique for loading DNA, RNA, and proteins into live human cells. Bead loading induces a temporary mechanical disruption to the cell membrane, allowing macromolecules to enter adherent, live mammalian cells. At less than 0.01 USD per experiment, bead loading is the least expensive cell loading method available.Moreover, bead loading does not substantially stress cells or impact their viability or proliferation. This manuscript describes the steps of the bead loading procedure, adaptations, variations, and technical limitations. This methodology is especially suited for live-cell imaging but provides a practical solution for other applications requiring the introduction of proteins, beads, RNA, or plasmids into living, adherent mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.