O uso de animais na pesquisa científica tem contribuído significativamente para o desenvolvimento da ciência, promovendo vários avanços na compreensão da maquinaria metabólica, bem como a descoberta de tratamentos e medidas preventivas aplicadas à medicina humana e veterinária. O desenvolvimento e utilização de métodos alternativos é encorajado, no entanto, em algumas situações, ainda é necessária a utilização de animais em conformidade com termos éticos. Estabelecer valores de referência hematológicos e bioquímicos para animais de laboratório é essencial para avaliar alterações funcionais, no entanto, existem poucos dados na literatura sobre estes valores, sendo fundamentalmente uma base comparativa. O presente trabalho foi delineado para estabelecer valores de referência hematológicos e bioquímicos em linhagens camundongos utilizados em pesquisa científica. Foram avaliados o perfil sanguíneo (hemograma, reticulócitos e mielograma) e a determinação bioquímica sérica de proteínas totais, albumina, glicose, colesterol, triglicerídeos, cálcio e fósforo. Foram utilizados camundongos C57BL/6, BALB/c e Swiss Webster, do sexo masculino, 2-3 meses de idade. Os resultados padronizam intervalos de referência em camundongos criados em Biotério, refletindo a condição esperada nesses animais submetidos à investigação científica.
Asthma is a chronic inflammatory disease that affects more females than males after puberty, and its symptoms and severity in women change during menstruation and menopause. Recently, evidence has demonstrated that interactions among the microbiota, female sex hormones, and immunity are associated with the development of autoimmune diseases. However, no studies have investigated if therapeutic gut microbiota modulation strategies could affect asthma exacerbation during menstruation and menopause. Here we aimed to examine the preventive effects of a probiotic, Bifidobacterium longum 51A, on airway inflammation exacerbation in allergic ovariectomized mice. We first evaluated the gut microbiota composition and diversity in mice 10 days after ovariectomy. Next, we examined whether re-exposure of ovariectomized allergic mice to antigen (ovalbumin) would lead to exacerbation of lung inflammation. Finally, we evaluated the preventive and treatment effect of B. longum 51A on lung inflammation and airway hyperresponsiveness. Our results showed that whereas ovariectomy caused no alterations in the gut microbiota composition and diversity in this animal model, 10 days after ovariectomy, preventive use administration of B. longum 51A, rather than its use after surgery was capable of attenuate the exacerbated lung inflammation and hyperresponsiveness in ovariectomized allergic mice. This prophylactic effect of B. longum 51A involves acetate production, which led to increased fecal acetate levels and, consequently, increased Treg cells in ovariectomized allergic mice.
The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity.
Allergic asthma is a chronic disease mainly characterised by eosinophil inflammation and airway remodelling. Many studies have shown that the gut microbiota of allergic individuals differs from that of non-allergic individuals. Although high levels of bifidobacteria have been associated with healthy persons, Bifidobacterium adolescentis ATCC 15703, a gut bacteria, has been associated with allergic individuals in some clinical studies. The relationship between B. adolescentis ATCC 15703 and asthma or allergies has not been well elucidated, and its effect may be dependent on the host's genetic profile or disease state. To elucidate this question, we evaluated the role of preventive B. adolescentis ATCC 15703 treatment on experimental allergic airway inflammation in two genetically different mouse strains, Balb/c and C57BL/6 (B6). Balb/c mice display a greater predisposition to develop allergic responses than B6 mice. Oral preventive treatment with B. adolescentis ATCC 15703 modulated experimental allergic airway inflammation, specifically in Balb/c mice, which showed decreased levels of eosinophils in the airway. B6 mice did not exhibit any significant alterations in eosinophils but showed an increased influx of total leukocytes and neutrophils into the airway. The mechanism underlying the beneficial effects of these bacteria in experimental allergic mice may involve products of bacteria metabolism, as dead bacteria did not mimic the ability of live B. adolescentis ATCC 15703 to attenuate the influx of eosinophils into the airway. To conclude, preventive oral B. adolescentis ATCC 15703 treatment can attenuate the major characteristic of allergic asthma, eosinophil airway influx, in Balb/c but not B6 mice. These results suggest that oral treatment with this specific live bacterial strain may have therapeutic potential for the treatment of allergic airway disease, although its effect is mouse-strain-dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.