Matrix projection models are among the most widely used tools in plant ecology. However, the way in which plant ecologists use and interpret these models differs from the way in which they are presented in the broader academic literature. In contrast to calls from earlier reviews, most studies of plant populations are based on < 5 matrices and present simple metrics such as deterministic population growth rates. However, plant ecologists also cautioned against literal interpretation of model predictions. Although academic studies have emphasized testing quantitative model predictions, such forecasts are not the way in which plant ecologists find matrix models to be most useful. Improving forecasting ability would necessitate increased model complexity and longer studies. Therefore, in addition to longer term studies with better links to environmental drivers, priorities for research include critically evaluating relative ⁄ comparative uses of matrix models and asking how we can use many short-term studies to understand long-term population dynamics.
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.
Summary1. Conservation and restoration practitioners often struggle to define appropriate targets for restoration. Frequently, 'pre-settlement conditions' (the conditions that are believed to have existed prior to European settlement) are used. In this review, we draw on our experiences working with land-managers to restore native ecosystems in the Pacific Northwest (USA) to discuss some of the challenges in using pre-settlement conditions as a restoration target. 2. We have found that information on the structure and composition of pre-settlement communities does not exist in sufficient detail to set quantitative restoration targets. 3. The systems we work in have been so altered from the historic condition (as we best understand it), that mimicking the anthropogenic and 'natural' disturbances that shaped these communities is both difficult and unlikely to guarantee success. 4. Furthermore, the pre-settlement condition may not be an appropriate restoration goal given ongoing global changes, including species invasions, habitat loss, and climate change. 5. Synthesis and applications. We suggest that rather than focusing on historic benchmarks, restoration goals should be based on ecological principles that will lead to resilient, functioning ecosystems. We provide real-world examples for how scientists and managers can work together to define and test appropriate and effective restoration methods and targets.
We explored the long‐term (8‐yr) effects of separate field manipulations of temperature and nutrient availability on carbon balance in wet sedge tundra near the Arctic Long Term Ecological Research (LTER) site at Toolik Lake, Alaska. Our goals were (1) to assess the relative importance of chronic warming (with field greenhouses) and increased N and P availability (by fertilization) in controlling gross ecosystem photosynthesis, ecosystem respiration (plant plus heterotrophic respiration), and ultimately ecosystem C balance; and (2) to attempt to partition ecosystem responses to these treatments between plant and soil contributions. We present results of the effects of these manipulations on whole‐system CO2 exchange over seasonal and diel cycles, and on nonrhizosphere soil microbial respiration using in situ soil incubations. Wet sedge control plots were, at best, a weak sink for carbon even during the peak growing season. Chronic nutrient additions of N + P shifted wet sedge carbon balance to a strong sink throughout the growing season; nutrient availability regulated seasonal and diel CO2 exchanges in these two wet sedge ecosystems. The N + P plots had significantly higher photosynthesis and ecosystem respiration in spite of the unanticipated effect of ∼30% reduction in thaw depth in these plots, apparently due to a twofold increase in litter accumulation insulating the soil surface and/or possible shading from greater plant cover in these plots. These results highlighted the prevailing importance of nutrient–carbon interactions in controlling ecosystem processes and ecosystem C balance in arctic tundra. In contrast, warming had only subtle effects on CO2 exchanges. Increased temperatures in the warmed plots had little effect on instantaneous rates of photosynthesis or respiration. After eight years of chronic warming with an average 5.6°C higher air temperature over the growing season and a 40–200% increase in net N mineralization rate, it was surprising that warming did not have more profound effects on CO2 exchange and plant cover. If there were an effect of warming, increased temperatures might cause early canopy development and lengthen the growing season, rather than directly affect instantaneous rates of photosynthesis. Based on photosynthesis–light response curves developed from the early‐ and late‐season diel measurements, we demonstrated that the main effect of warming was to accelerate the development of the canopy early in the season. By midseason, however, there were no significant differences in C exchange between warmed and control plots. Perhaps the most important and novel result emerging from this study is the prevailing importance of plant C exchange, not soil processes, in driving ecosystem C fluxes. First, nonrhizosphere soil microbial respiration as estimated CO2 flux from in situ soil incubations was a small fraction of whole‐system respiration and did not vary among treatments. This suggests that anaerobic conditions or some other factor may limit soil microbial respiration more than do t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.