The utilisation of the CRISPR/Cas9 technology has sparked a renewed interest in gene drive mechanisms. These mechanisms of biased inheritance may yield promising applications in the fields of vector control and nature conservation. However, the same properties that will enable these applications may also pose a risk if organisms that are equipped with gene drive cassettes are unintentionally released into the environment. Although several groups of scientists and regulators have started to address these safety concerns, there are currently no dedicated guidelines published on the required risk assessment and minimal control measures applicable to gene drive organisms in contained use. To fill this gap, this paper describes a fundamental approach to assessing the risks of these organisms while handled in a contained laboratory environment. Based on the likelihood that an adverse effect will arise from the handling of a gene drive organism and the severity of this effect, three risk classes for contained use activities are presented. Finally, specific minimum requirements regarding physical measures and working practices are proposed according to the presented risk classes and tailored to activities with rodents, insects, and fungi, which are most likely to be used for gene drive applications in the near future.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Over the past months, considerable efforts have been put into developing effective and safe drugs and vaccines against SARS-CoV-2. Various platforms are being used for the development of COVID-19 vaccine candidates: recombinant viral vectors, protein-based vaccines, nucleic acid-based vaccines, and inactivated/attenuated virus. Recombinant viral vector vaccine candidates represent a significant part of those vaccine candidates in clinical development, with two already authorised for use in the European Union and one currently under rolling review by the European Medicines Agency (EMA). Since recombinant viral vector vaccine candidates are considered as genetically modified organisms (GMOs), their regulatory oversight includes besides an assessment of their quality, safety and efficacy, also an environmental risk assessment (ERA). The present article highlights the main characteristics of recombinant viral vector vaccine (candidates) against SARS-CoV-2 in the pipeline and discusses their features from an environmental risk point of view.
Since the appearance in 1986 of epidemic of bovine spongiform encephalopathy (BSE), a new form of neurological disease in cattle which also affected human beings, many diagnostic and research activities have been performed to develop detection and therapeutic tools. A lot of progress was made in better identifying, understanding and controlling the spread of the disease by appropriate monitoring and control programs in European countries. This paper reviews the recent knowledge on pathogenesis, transmission and persistence outside the host of prion, the causative agent of transmissible spongiform encephalopathies (TSE) in mammals with a particular focus on risk (re)assessment and management of biosafety measures to be implemented in diagnostic and research laboratories in Belgium. Also, in response to the need of an increasing number of European diagnostic laboratories stopping TSE diagnosis due to a decreasing number of TSE cases reported in the last years, decontamination procedures and a protocol for decommissioning TSE diagnostic laboratories is proposed.
Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.
Recent scientific and technical developments create novel opportunities for vaccine development. Regulatory compliance has to be ensured from preclinical research to market authorization, whereby different legal frameworks that go beyond quality, efficacy or patient safety aspects need to be taken into account. As academia and start-ups are often focused on gathering scientific evidence, the regulatory maze is often regarded by applicants as challenging in the overall pathway to clinical translation. This is particularly true for applications concerning vaccine candidates containing or consisting of genetically modified organisms (GMOs). Active communication between applicants and competent authorities or advisory bodies early in the development stages facilitates a correct implementation of the regulatory frameworks and is of utmost importance to identify challenges or hurdles in order to avoid unnecessary delay in scientific review. Based on the state-of-play in Belgium, this chapter discusses examples of regulatory journeys of applications with genetically modified viral vectors and novel vaccine candidates that have been reviewed by GMO national competent authorities in Belgium and in Europe. They highlight the need of having a comprehensive view of global perspectives early in the development to facilitate the translation of research to clinical development or even market authorization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.