An investigation was done to study the heterotic grouping and patterning in quality protein maize inbreds. Biochemical screening resulted in the choice of 3 inbreds each with high (UQPM 2, UQPM 4, and UQPM 21) and low (UQPM 18, UQPM 19, and UQPM 20) lysine and tryptophan contents respectively for genetic studies using diallel analysis. UQPM 20 × UQPM 18 was notable as it possessed high standard heterosis and specific combining (sca) effect for grain yield, protein, tryptophan, and lysine. Based on yield sca, the 6 parental inbreds were classified into 3 heterotic groups. Intergroup cross UQPM 20 × UQPM 18 was the best in yield and quality. The superior heterotic pattern was flint × dent. In genetic diversity analysis using simple sequence repeat markers, the inbreds of the best hybrid, UQPM 20 × UQPM 18, lay in same cluster but different subclusters. Correlations between genetic distance and sca effects were low for grain yield, which hampers the prediction of heterosis from molecular data alone.
Soybean is a predominantly self-pollinated crop. It is also one of the important oilseed legumes. Soybean is an excellent crop having industrial, traditional, culinary, feeding, and cultural roles. Genetic diversity in breeding programs is of prime importance as it ensures the success of any breeding by enhancing the outcomes and results of the plants. The phenomenon wherein the progeny exhibits greater biomass (yield) and a faster rate of development and fertility than its parents is referred to as heterosis. As of now, heterosis is mainly limited to the trait of seed yield and is considered the basis for the development of better (superior) varieties. Male sterility (MS) is extensively used for the production of seeds and the improvement of crops coupled with the traditional breeding programs and molecular technology. Therefore, deployment of MS and heterosis in breeding soybean could yield better outcomes. This review aims to focus on two aspects, namely, MS and heterosis in soybean with its scope for crop improvement.
Angiotensin-converting enzyme I (ACE I) is a zinc-containing metallopeptidase involved in the renin-angiotensin system (RAAS) that helps in the regulation of hypertension and maintains fluid balance otherwise, which results in cardiovascular diseases (CVDs). One of the leading reasons of global deaths is due to CVDs. RAAS also plays a central role in maintaining homeostasis of the CV system. The commercial drugs available to treat CVDs possess several fatal side effects. Hence, phytochemicals like peptides having plant-based origin should be explored and utilized as alternative therapies. Soybean is an important leguminous crop that simultaneously possesses medicinal properties. Soybean extracts are used in many drug formulations for treating diabetes and other disorders and ailments. Soy proteins and its edible products such as tofu have shown potential inhibitory activity against ACE. Thus, this review briefly describes various soy proteins and products that can be used to inhibit ACE thereby providing new scope for the identification of potential candidates that can help in the design of safer and natural treatments for CVDs.
A set of diverse soybean genotypes were evaluated to identify contrasting phenotypes for understanding the genetics of waterlogging and response to the selection of primary and discernable traits for pregermination anaerobic stress tolerance. Agromorphological characterization of genotypes was also carried out. Screening and tolerance to waterlogging were based on the ability of genotypes to germinate in excessive stress duration in days. The existence of significant variability in genotypes of soybean suggested the use of systematic selection for improving pregermination anaerobic stress tolerance. The study revealed that waterlogging tolerance was governed by testa colour of genotypes. Our results indicated a significant (P < 0.05) correlation with seed weight, flower, hypocotyl and testa colour under pregermination anaerobic stress. In conclusion, the study points out that testa integrity and delay in germination are required to be used as one of the criteria for indirect selection in breeding for pregermination waterlogging tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.