This paper proposes an architecture for tactile-based fabric learning and classification. The architecture is based on a number of SVM-based learning units, which we call fabric classification cores, specifically trained to discriminate between two fabrics. Each core is based on a specific subset of the fully available set of features, on the basis of their discriminative value, determined using the p-value. During fabric recognition, each core casts a vote. The architecture collects votes and provides an overall classification result. We tested seventeen different fabrics, and the result showed that classification errors are negligible.
A tree shaped fractal antenna with U shaped slot and W-shaped slot has been designed and analyzed in this article by using ANSYS electromagnetic desktop 17. The proposed antenna is analyzed taking FR4 substrate is taken as the substrate material. The proposed antenna exhibits multiband characteristics (2.75-3.17GHz, 4.1-4.8GHz, 5.1-5.3GHz and 5.4-6.3GHz, 7.21-12.8GHz) in the Ultra-wide band region. The path that is radiating by superposition of the rectangular patches and multiple-band operating frequency is obtained by increasing the U-shapes slots and w-shaped slot on the patch. The improvement in the impedance characteristics between the adjacent frequencies is achieved by using defected ground structure (DGS) on the ground plane as to cover the region of UWB application (3.1-10.6GHz). The proposed antenna works in the applications like Wi-Max, Weather forecasting RADAR systems and WLAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.