AbstractIn this review, the state of the art on the removal of malachite green dye from aqueous solution using adsorption technique is presented. The objective is to critically analyze different adsorbents available for malachite green dye removal. Hence, the available recent literature in the area is categorized according to the cost, feasibility, and availability of adsorbents. An extensive survey of the adsorbents, derived from various sources such as low cost biological materials, waste material from industry, agricultural waste, polymers, clays, nanomaterials, and magnetic materials, has been carried out. The review studies on different adsorption factors, such as pH, concentration, adsorbent dose, and temperature. The fitting of the adsorption data to various models, isotherms, and kinetic regimes is also reported.
A general and quantitative method to characterize molecular transport in polymers with good temporal and high spatial resolution, in complex environments, is an important need of the pharmaceutical, textile, and food and beverage packaging industries, and of general interest to the polymer science community. Here we show how the amplified infrared (IR) absorbance sensitivity provided by plasmonic nanoantenna-based surface enhanced infrared absorption (SEIRA) provides such a method. SEIRA enhances infrared (IR) absorbances primarily within 50 nm of the nanoantennas, enabling localized quantitative detection of even trace quantities of analytes and diffusion measurements in even thin polymer films. Relative to a commercial attenuated total internal reflection (ATR) system, the limit of detection is enhanced at least 13-fold, and as is important for measuring diffusion, the detection volume is about 15 times thinner. Via this approach, the diffusion coefficient and solubility of specific molecules, including L-ascorbic acid (vitamin C), ethanol, various sugars, and water, in both simple and complex mixtures (e.g., beer and a cola soda), were determined in poly(methyl methacrylate), high density polyethylene (HDPE)-based, and polypropylene-based polyolefin films as thin as 250 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.