Background: Colorectal cancer (CRC) is considered as the most common type of gastrointestinal cancers. Chemotherapy became limited due to the adverse side effects. Therefore, the most effective Croton tiglium extract was selected to be incorporated by silver nanoparticles (Ag-NPs) then evaluated against colon cancer induced by azoxymethane (AOM) in rats. Methods: Different hematological and biochemical measurements were quantified in addition to markers of oxidative stress. Specific tumor and inflammatory markers were assayed. Colonic tissues were examined histopathologically in addition to immunohistochemistry (IHC). Native proteins and isoenzymes patterns were electrophoretically assayed beside expression of Tumor Protein P 53 (TP 53) and Adenomatous Polyposis Coli (APC) genes in colonic tissues. Results: It was found that AOM caused significant (P≤0.05) elevation in the hematological and biochemical measurements. C. tiglium nano-extract restored these measurements to normalcy. Tumor and inflammatory markers elevated significantly (P≤0.05) in sera of AOM induced colon cancer group in addition to increasing peroxidation products with decline in antioxidant enzymes activities in colon tissues. Nano-extract restored these measurements to normalcy in post-treated group. Histopathological study revealed that nano-extract minimized severity of inflammatory reactions in all nano-extract treated groups and prevented anti-Keratin 20 antibody expression in post-treated group. The lowest similarity index (SI%) values were noticed with electrophoretic protein (SI=71.43%), lipid (SI=0.00%) and calcium (SI=75.00%) moieties of protein patterns, catalase (SI=85.71%), peroxidase (SI=85.71%), α-esterase (SI=50.00%) and β-esterase (SI=50.00%) isoenzymes in colon cancer group. Furthermore, AOM altered the relative quantities of total native bands. The nano-extract prevented the alterations that occurred qualitatively in nano-extract post-treated group and quantitatively in all nano-extract treated groups. Levels of TP 53 and APC gene expression increased in AOM injected group and nano-extract restored their levels to normalcy in the post-treated group. Conclusion: C. tiglium nano-extract exhibited ameliorative effect against the biochemical and molecular alterations induced by AOM in nano-extract post-treated group.
Antioxidants are materials that scavenge or remove free radicals from living systems. The oxidation process ends in the production of free radicals. These free radicals are the chief birthplace of cancerous cells. Antioxidizing agents remove free radical intermediates by terminating oxidation processes by being oxidized themselves. On the other hand, infectious diseases affect the world on a large scale. To fight these diseases several synthetic compounds have been used. Plant based medications play important role in this regard. So, the current research aimed to investigate the antibacterial and antioxidant effect of Berberis lycium Royle root bark (BLR) extract. Berberis lycium Royle was used for phytochemical analysis and also as antimicrobial and antioxidant agents. The antimicrobial activity was evaluated by the agar well diffusion method. Current study revealed that BLR was rich in phytochemicals and toxic against tested pathogenic bacteria. BLR showed the highest activity against S. pyogenes (13.3±0.8 mm). The lowest antibacterial activity was reported against E. coli (0±0 mm). In case of minimum inhibitory concentration, it was observed that BLR with 10 μg/mL concentration showed the highest activity while 2.5 μg/mL of BLR showed the least inhibitory activity. The highest In vitro antioxidant activity was recorded as 65% at 100 µg/mL. In case of in vivo antioxidant activity level of CAT, GSH and SOD were decreased while that of MDA was enhanced in groups treated with CCl4 as compared to the control group. BLR extract treatment reversed all these changes significantly. Current results indicate that BLR is effective against bacterial pathogens and also has antioxidant potential.
T HIS STUDY aimed to enhance efficiency of the different Croton tiglium (C. tiglium) seeds extracts by incorporation of silver nanoparticles (Ag-NPs) through raised up cytotoxicity against growth of human colon cancer cells. C. tiglium seeds contain various phytoconstituents e.g., carbohydrates (glycosides), flavonoids, sterols (triterpenes), alkaloids and proteins. The protein was hydrolyzed in the dried aqueous seeds extract into free amino acids, the essential amino acids (20.71%) & nonessential amino acids (79.29%). Furthermore, the mucilage in the dried aqueous seeds extract and the lipoidal contents in the saponifiable matter of the petroleum ether extract were represented by total identified sugars represent ~81.21 % of the total mucilage hydrolyzate. The lipoidal contents in the saponifiable matter of the petroleum ether extract were represented by total saturated fatty acids (13.68%), total monoenoic fatty acids (34.49%), total dienoic fatty acids (45.76%) and total identified fatty acids (93.93%). Moreover, the unsaponifiable matter was represented by saturated hydrocarbons (40.73%), unsaturated hydrocarbons (18.93%), fatty alcohols (10.08%), sterols (10.61%) and total identified compounds (80.35%). In addition, there were four compounds (β sitosterol, α-amyrin, Oleanolic acid and 3-O-β-D-glucopyranosyl-β-sitosterol (daucosterol)) isolated from the petroleum ether extract. Additionally, incorporation of Ag-NPs into the extract caused no toxicity on the experimental animals when administrated orally. It was found that the median lethal dose (LD 50) of the ethanolic, petroleum ether and aqueous seeds extract-Ag nanocomposites was about 7.95, 5.2 and 65 ml/Kg, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.