Conventional manufacturing of microfluidic devices from glass substrates is a complex, multi-step process that involves different fabrication techniques and tools. Hence, it is time-consuming and expensive, in particular for the prototyping of microfluidic devices in low quantities. This article describes a laser-based process that enables the rapid manufacturing of enclosed micro-structures by laser micromachining and microwelding of two 1.1-mm-thick borosilicate glass plates. The fabrication process was carried out only with a picosecond laser (Trumpf TruMicro 5×50) that was used for: (a) the generation of microfluidic patterns on glass, (b) the drilling of inlet/outlet ports into the material, and (c) the bonding of two glass plates together in order to enclose the laser-generated microstructures. Using this manufacturing approach, a fully-functional microfluidic device can be fabricated in less than two hours. Initial fluid flow experiments proved that the laser-generated microstructures are completely sealed; thus, they show a potential use in many industrial and scientific areas. This includes geological and petroleum engineering research, where such microfluidic devices can be used to investigate single-phase and multi-phase flow of various fluids (such as brine, oil, and CO2) in porous media.
We provide experimental evidence that the laser beam scanning strategy has a significant influence on material removal rate in the ultrafast laser machining of glass. A comparative study of two laser beam scanning methods, (i) bidirectional sequential scanning method (SM) and (ii) bidirectional interlaced scanning method (IM), is presented for micromachining 1.1-mm-thick borosilicate glass plates (Borofloat® 33). Material removal rate and surface roughness are measured for a range of pulse energies, overlaps, and repetition frequencies. With a pulse overlap of ≤90%, IM can provide double the ablation depth and double the removal rate in comparison to SM, whilst maintaining very similar surface roughness. In both cases, the root-mean-square (RMS) surface roughness (Sq) was in the range of 1 μm to 2.5 μm. For a 95% pulse overlap, the difference was more pronounced, with IM providing up to four times the ablation depth of SM; however, this is at the cost of a significant increase in surface roughness (Sq values >5 μm). The increased ablation depths and removal rates with IM are attributed to a layer-by-layer material removal process, providing more efficient ejection of glass particles and, hence, reduced shielding of the machined area. IM also has smaller local angles of incidence of the laser beam that potentially can lead to a better coupling efficiency of the laser beam with the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.