We provide experimental evidence that the laser beam scanning strategy has a significant influence on material removal rate in the ultrafast laser machining of glass. A comparative study of two laser beam scanning methods, (i) bidirectional sequential scanning method (SM) and (ii) bidirectional interlaced scanning method (IM), is presented for micromachining 1.1-mm-thick borosilicate glass plates (Borofloat® 33). Material removal rate and surface roughness are measured for a range of pulse energies, overlaps, and repetition frequencies. With a pulse overlap of ≤90%, IM can provide double the ablation depth and double the removal rate in comparison to SM, whilst maintaining very similar surface roughness. In both cases, the root-mean-square (RMS) surface roughness (Sq) was in the range of 1 μm to 2.5 μm. For a 95% pulse overlap, the difference was more pronounced, with IM providing up to four times the ablation depth of SM; however, this is at the cost of a significant increase in surface roughness (Sq values >5 μm). The increased ablation depths and removal rates with IM are attributed to a layer-by-layer material removal process, providing more efficient ejection of glass particles and, hence, reduced shielding of the machined area. IM also has smaller local angles of incidence of the laser beam that potentially can lead to a better coupling efficiency of the laser beam with the material.
Synthetic pulse-position-modulated binary surface-relief elements with subwavelength transverse features are designed by using a combination of scalar and rigorous electromagnetic diffraction theories. Theoretically, both reflection- and transmission-type elements achieve nearly 100% diffraction efficiency at Bragg incidence. Using direct-write electron-beam lithography and reactive ion etching, we demonstrate a reflective binary Bragg-type multiple beam splitter for operation at lambda = 1.064 microm.
We report on the design and fabrication of novel diffractive phase elements that reconstruct distinct intensity patterns in the far-field on illumination with two specific wavelengths. The elements contain deep surface-relief structures that represent phase-delays of greater than 2p radians. The design process incorporates a modified version of the iterative Fourier transform algorithm. A 16 phase-level element for dual wavelength (blue and red) operation, with high diffraction efficiency, is demonstrated experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.