Gynecologic cancer is one of the main causes of death in women. In this type of cancer, several molecules (oncogenes or tumor suppressor genes) contribute to the tumorigenic process, invasion, metastasis, and resistance to treatment. Based on recent evidence, the detection of molecular changes in these genes could have clinical importance for the early detection and evaluation of tumor grade, as well as the selection of targeted treatment. Researchers have recently focused on cancer stem cells (CSCs) in the treatment of gynecologic cancer because of their ability to induce progression and recurrence of malignancy. This has highlighted the importance of a better understanding of the molecular basis of CSCs. The purpose of this review is to focus on the molecular mechanism of gynecologic cancer and the role of CSCs to discover more specific therapeutic approaches to gynecologic cancer treatment.
Background:Cancer immunotherapy is a promising strategy for cancer treatment. In this strategy, the immune system is triggered to destroy cancer cells. IL-2 is an important factor in passive cancer immunotherapy that helps modulating some important immune functions. One of the IL-2 limitations is low serum half-life; therefore, repetitive high doses of the injections are required to maintain effective concentrations. High-dose IL-2 therapy results in severe side effects; thus, improvement of its serum half-life would provide therapeutic benefits.Methods:We have investigated a strategy that is able to utilize an albumin-binding domain (ABD) from streptococcal protein G. In this strategy, the fusion protein ABD-rIL-2 binds to serum albumin, which results in improvement of the IL-2 serum half-life. PET26b+ plasmid was used as an expression vector, which encoded rIL-2 and ABD-rIL-2, both fused to pelB secretion signal under the control of the strong bacteriophage T7 promoter. The constructs were expressed in E. coli
Rosetta (DE3), and the recombinant proteins were purified from periplasmic fractions.Results:The analysis of in vitro bioactivity proved that the fusion of ABD to rIL-2 does not interfere with its bioactivity. ABD-rIL-2 fusion protein indicated higher serum half-life compared to rIL-2, when it was tested in the BALB/c mice.Conclusion:The current study provides an alternative strategy to extend the half-life and improve pharmacokinetic properties of rIL-2 without reducing its bioactivity in vitro.
Type I hypersensitivity (allergic reaction) is an unsuitable or overreactive immune response to an allergen due to cross-link immunoglobulin E (IgE) antibodies bound to its high-affinity IgE receptors (FcεRIs) on effector cells. It is needless to say that at least two epitopes on allergens are required to the successful and effective cross-linking. There are some reports pointing to small proteins with only one IgE epitope could cross-link FcεRI-bound IgE through homo-oligomerization which provides two same IgE epitopes. Therefore, oligomerization of allergens plays an indisputable role in the allergenic feature and stability of allergens. In this regard, we review the signaling capacity of the B cell receptor (BCR) complex and cross-linking of FcεRI which results in the synthesis of allergen-specific IgE. This review also discusses the protein-protein interactions involved in the oligomerization of allergens and provide some explanations about the oligomerization of some well-known allergens, such as calcium-binding allergens, Alt a 1, Bet v 1, Der p 1, Per a3, and Fel d 1, along with the effects of their concentrations on dimerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.