The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. Almost all natural flavonoids exist as their O-glycoside or C-glycoside forms in plants. The dietary flavonoid C-glycosides have received less attention than their corresponding O-glycosides. This review summarizes current knowledge regarding flavonoid C-glycosides and their influence on human health. Among the flavonoid C-glycosides, flavone C-glycosides, especially vitexin, isoorientin, orientin, isovitexin and their multiglycosides are more frequently mentioned than others. Flavonoid C-monoglycosides are poorly absorbed in human beings with very few metabolites in urine and blood and are deglycosylated and degraded by human intestinal bacteria in colon. However, flavonoid C-multiglycosides are absorbed unchanged in the intestine and distributed to other tissues. Flavonoid C-glycosides showed significant antioxidant activity, anticancer and antitumor activity, hepatoprotective activity, anti-inflammatory activity, anti-diabetes activity, antiviral activity, antibacterial and antifungal activity, and other biological effects. It looks like that the C-glycosylflavonoids in most cases showed higher antioxidant and anti-diabetes potential than their corresponding O-glycosylflavonoids and aglycones. However, there is a lack of in vivo data on the biological benefits of flavonoid C-glycosides. It is necessary to investigate more on how flavonoid C-glycosides prevent and handle the diseases.
We identified 11 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) that occur in concentrations equivalent to starch (mg/g fresh mass) in aboveground tissues of coyote tobacco (Nicotiana attenuata) and differ in their sugar moieties and malonyl sugar esters (0-2). Concentrations of HGL-DTGs, particularly malonylated compounds, are highest in young and reproductive tissues. Within a tissue, herbivore elicitation changes concentrations and biosynthetic kinetics of individual compounds. Using stably transformed N. attenuata plants silenced in jasmonate production and perception, or production of N. attenuata Hyp-rich glycopeptide systemin precursor by RNA interference, we identified malonylation as the key biosynthetic step regulated by herbivory and jasmonate signaling. We stably silenced N. attenuata geranylgeranyl diphosphate synthase (ggpps) to reduce precursors for the HGL-DTG skeleton, resulting in reduced total HGL-DTGs and greater vulnerability to native herbivores in the field. Larvae of the specialist tobacco hornworm (Manduca sexta) grew up to 10 times as large on ggpps silenced plants, and silenced plants suffered significantly more damage from herbivores in N. attenuata's native habitat than did wild-type plants. We propose that high concentrations of HGL-DTGs effectively defend valuable tissues against herbivores and that malonylation may play an important role in regulating the distribution and storage of HGL-DTGs in plants.
In bioassays with artificial diets, the 17-hydroxygeranyllinalool diterpenoid glycosides (HGL-DTGs) of Nicotiana attenuata function as antifeedants for the plant's adapted herbivore, tobacco hornworm (Manduca sexta). To determine whether HGLDTGs have a defensive function in planta, we suppressed HGL-DTG production by silencing the source of the geranylgeranyl diphosphates (GGPPs) required for geranyllinalool biosynthesis, a key intermediate. We used virus-induced gene silencing to suppress transcript levels of GGPP synthase gene (Naggpps) and farnesyl diphosphate (FPP) synthase gene (Nafpps), northern blotting and real-time polymerase chain reaction to quantify transcript accumulations, and radio gas chromatography to analyze prenyltransferase specificity. Silencing Nafpps had no effect on the accumulation of HGL-DTGs but decreased leaf steroid content, demonstrating that DTG-synthesizing enzymes do not use GGPP derived from FPP and confirming FPP's role as a steroid precursor. Unlike plants silenced in the phytoene desaturase gene (Napds), which rapidly bleached, Naggppssilenced plants had reduced HGL-DTG but not carotenoids or chlorophyll contents, demonstrating that Naggpps supplies substrates for GGPP biosynthesis for HGL-DTGs, but not for phytoene or phytol. Expression of Naggpps in Escherichia coli revealed that the recombinant protein catalyzes the GGPP synthesis from isopentenyl diphosphate and dimethylallyl diphosphate. When fed on silenced plants, hornworm larvae gained up to 3 times more mass than those that fed on empty vector control plants or plants silenced in Nafpps, the trypsin protease inhibitor gene, or the putrescine N-methyltransferase gene. We conclude that HGL-DTGs or other minor undetected diterpenoids derived from GGPP function as direct defenses for N. attenuata and are more potent than nicotine or trypsin protease inhibitors against attack by hornworm larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.