Abstract-Phase noise is a topic of theoretical and practical interest in electronic circuits, as well as in other fields, such as optics. Although progress has been made in understanding the phenomenon, there still remain significant gaps, both in its fundamental theory and in numerical techniques for its characterization. In this paper, we develop a solid foundation for phase noise that is valid for any oscillator, regardless of operating mechanism. We establish novel results about the dynamics of stable nonlinear oscillators in the presence of perturbations, both deterministic and random. We obtain an exact nonlinear equation for phase error, which we solve without approximations for random perturbations. This leads us to a precise characterization of timing jitter and spectral dispersion, for computing which we develop efficient numerical methods. We demonstrate our techniques on a variety of practical electrical oscillators and obtain good matches with measurements, even at frequencies close to the carrier, where previous techniques break down. Our methods are more than three orders of magnitude faster than the brute-force Monte Carlo approach, which is the only previously available technique that can predict phase noise correctly.
This paper addresses the problem of power dissipation during the buffer insertion phase of interconnect performance optimization. It is shown that the interconnect delay is actually very shallow with respect to both the repeater size and separation close to the minimum point. A methodology is developed to calculate the repeater size and interconnect length which minimizes the total interconnect power dissipation for any given delay penalty. This methodology is used to calculate the power-optimal buffering schemes for various ITRS technology nodes for 5% delay penalty. Furthermore, this methodology is also used to quantify the relative importance of the various components of the power dissipation for power-optimal solutions for various technology nodes.
This paper introduces an accurate analysis of on-chip inductance effects for distributed interconnects that takes the effect of both the series resistance and the output parasitic capacitance of the driver into account. Using rigorous first principle calculations, accurate expressions for the transfer function of these lines and their time-domain response have been presented for the first time. Using these, a new and computationally efficient performance optimization technique for distributed interconnects has been introduced. The new optimization technique has been employed to analyze the impact of line inductance on the circuit behavior and to illustrate the implications of technology scaling on wire inductance. It is shown that reduction in driver output resistance and input capacitance with scaling can make deep submicron designs increasingly susceptible to inductance effects if global interconnects are not scaled. On the other hand, for scaled global interconnects with increasing line resistance per unit length, as prescribed by the International Technology Roadmap for Semiconductors, the effect of inductance on interconnect performance actually diminishes. Additionally, the impact of the wire inductance on catastrophic logic failures and IC reliability issues has also been analyzed.
This paper presents a comprehensive analysis of the thermal effh in advanced high performance interconnect systems arising due to selfheating under various circuit conditions, including electrostatic discharge. Technology (Cu, low-k etc) and scaling effects on the thermal characteristics of the interconnects, and on their electromigration reliability has been analyzed simultaneously, which will have important implications for providing robust and aggressive deep sub-micron interconnect design guidelines. Furthermore, the impact of these thermal effects on the design (driver sizing) and optimization of the interconnect length between repeaters at the upperlevel signal lines are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.