Inter-a-trypsin inhibitors (ITIs) are protease inhibitors stabilizing the extracellular matrix. ITIs consist of one light (bikunin) and two heavy chains (ITIHs). We have recently characterized ITIH5, a novel member of the ITIH gene family, and showed that its messenger RNA is lost in a high proportion of breast tumours. In the present study, an ITIH5-specific polyclonal antibody was generated, validated with western blot and used for immunohistochemical analysis on a tissue microarray; ITIH5 was strongly expressed in epithelial cells of normal breast (n ¼ 11/15), while it was lost or strongly reduced in 42% (92/217) of invasive breast cancers. ITIH5 expression in invasive carcinomas was associated with positive expression of oestrogen receptor (P ¼ 0.008) and histological grade (P ¼ 0.024). Correlation of ITIH5 expression with clinical outcome revealed that patients with primary tumours retaining abundant ITIH5 expression had longer recurrence-free survival (RFS; P ¼ 0.037) and overall survival (OS; P ¼ 0.044), compared to those with reduced expression (mean RFS: 102 vs 78 months; mean OS: 120 vs 105 months). Methylation-specific PCR analysis frequently showed strong methylation of the ITIH5 promoter in primary breast tumours (41%, n ¼ 109) and breast cancer cell lines (n ¼ 6). Methylation was significantly associated with mRNA loss (Po0.001; n ¼ 39), and ITIH5 expression was induced after treatment of tumour cell lines with the demethylating agent 5-aza-2 0 -deoxycytidine. Moreover, ITIH5 promoter methylation was significantly associated with reduced OS (P ¼ 0.008). The cellular function of ITIH5 was evaluated by forced expression of a full-length ITIH5 complementary DNA in the breast cancer cell line MDA-MB-231, which does not endogenously express ITIH5. ITIH5-expressing clones showed a 40% reduced proliferation rate compared to mock-transfected cells. Overall, these data show that promoter methylation-mediated loss of ITIH5 expression is associated with unfavourable outcome in breast cancer patients, and thus ITIH5 could be used as a prognostic marker, although this marker is not multivariate independent due to its close association with ER expression. Our data indicate that ITIH5 is a candidate class II tumour suppressor gene and could be involved in tumour progression, invasion and metastasis, as its absence is associated with increased proliferation rates and a prognostic value indicating poor clinical outcome.
Introduction ISG15 is an ubiquitin-like molecule that is strongly upregulated by type I interferons as a primary response to diverse microbial and cellular stress stimuli. However, alterations in the ISG15 signalling pathway have also been found in several human tumour entities. To the best of our knowledge, in the current study we present for the first time a systematic characterisation of ISG15 expression in human breast cancer and normal breast tissue both at the mRNA and protein level.
Synemin (SYNM) is a type IV intermediate filament that has recently been shown to interact with the LIM domain protein zyxin, thereby possibly modulating cell adhesion and cell motility. Owing to this multiplicity of potential functions relevant to cancer development, we initiated a study to decipher SYNM expression and regulation in benign human breast tissue and breast cancer. Dot blot array analysis showed significant SYNM mRNA downregulation in 86% (n ¼ 100, Po0.001) of breast cancers compared with their normal tissue counterparts, a result that was confirmed by real-time PCR analysis (n ¼ 36, Po0.0001). Immunohistochemistry analysis showed abundant SYNM protein expression in healthy myoepithelial breast cells, whereas SYNM expression loss was evident in 57% (n ¼ 37, Po0.001) of breast cancer specimens. Next, we analyzed methylation of the SYNM promoter to clarify whether the SYNM gene can be silenced by epigenetic means. Indeed, methylation-specific PCR analysis showed tumor-specific SYNM promoter methylation in 27% (n ¼ 195) of breast cancers. As expected, SYNM promoter methylation was tightly associated (Po0.0001) with SYNM expression loss. Indepth analysis of the SYNM promoter by pyrosequencing showed extensive CpG methylation of DNA elements supposed to regulate gene transcription. Demethylating treatment of SYNM methylated breast cancer cell lines with 5-aza-2-deoxycytidine clearly reestablished the SYNM expression. Statistical analysis of the patient cohort showed a close association between SYNM promoter methylation and unfavorable recurrence-free survival (hazard ratio ¼ 2.941, P ¼ 0.0282). Furthermore, SYNM methylation positively correlated with lymph node metastases (P ¼ 0.0177) and advanced tumor grade (P ¼ 0.0275), suggesting that SYNM methylation is associated with aggressive forms of breast cancer. This is the first study on the epigenetic regulation of the SYNM gene in a cancer entity. We provide first hints that SYNM could represent a novel putative breast tumor suppressor gene that is prone to epigenetic silencing. SYNM promoter methylation may become a useful predictive biomarker to stratify breast cancer patients' risk for tumor relapse.
Background and Aims: Transketolase-like (TKTL) 1 is one of the key enzymes for anaerobic sugar degradation even in the presence of oxygen (aerobic glycolysis). Transketolase-dependent reactions supply malignant tumors with ribose and NADPH. Therefore, TKTL1 activity could be crucial for tumor proliferation and survival. The aim of the study was to evaluate the expression of TKTL1 in colorectal cancer (CRC) and its regulation under hypoxic conditions. Methods: We studied TKTL1 mRNA and protein expression in CRC cell lines and human CRC biopsies by quantitative real-time PCR, Western blotting and immunohistochemistry. Regulation of TKTL1 under oxygen depletion was analyzed by cultivating cells either in a three-dimensional spheroid model or in a hypoxia incubator chamber. Results: TKTL1 mRNA was heterogeneously expressed in monolayers of cells with high levels in HT-29 and SW480. TKTL1 protein was also clearly detectable in HT-29 and SW480. Hypoxia-inducible factor (HIF)-1 protein expression correlated with TKTL1 protein expression in SW480 spheroids over time. On the one hand, induction of hypoxia in T84 spheroids did not induce TKTL1; on the other hand, hypoxia by incubation at 1% O2 in a hypoxia incubator chamber clearly showed an upregulation of TKTL1. In 50% of CRC patients, TKTL1 protein expression was upregulated in tumor compared to non-tumor tissue. The immunohistochemical staining of TKTL1 in CRC patient samples resulted in 14 positive and 30 negative samples. Conclusions: TKTL1 expression correlated with HIF-1 protein expression and was induced upon hypoxic conditions which could facilitate energy supply to tumors under these circumstances. © 2013 S. Karger AG, Basel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.