Ultra-high resolution optical coherence tomography (OCT) imaging is demonstrated simultaneously at 840 nm and 1230 nm central wavelength using an off-the-shelf turn-key supercontinuum light source. Spectral filtering of the light source emission results in a double peak spectrum with average powers exceeding 100 mW and bandwidths exceeding 200 nm for each wavelength band. A free-space OCT setup optimized to support both wavelengths in parallel is introduced. OCT imaging of biological tissue ex vivo and in vivo is demonstrated with axial resolutions measured to be < 2 mum and < 4 mum at 840 nm and 1230 nm, respectively. This measuring scheme is used to extract spectroscopic features with outstanding spatial resolution enabling enhanced image contrast.
The objective of this study was to compare optical coherence tomography (OCT) with conventional techniques such as KOH-preparation, culture and histology in the identification of the fungal elements in the nail. A total of 18 patients were examined; 10 with clinically evident onychomycosis in toe nails, two with psoriatic nail lesions, one with nail affection caused by lichen planus and five healthy controls. Serial in vivo OCT analyses of onychomycosis was performed prior to KOH-preparation, culture and punch biopsy of the nail plate for consecutive histology. Fungal elements were detected non-invasively in vivo using OCT in all 10 patients with histologically proven onychomycosis. Fungal elements were detectable as highly scattering elongated structures inside the nail plate, in the middle of the areas of homogeneous decrease in signal intensity. KOH-preparations and culture did reveal a positive result in 5/6 out of 10 patients. In patients with psoriasis, lichen planus as well as in the healthy controls, no fungal infection could be detected by either method used. OCT is a reliable, easy to use, non-invasive and non-destructive method to visualise fungal elements in vivo in onychomycosis, even in cases of false negative KOH-preparation and culture. Furthermore, OCT offers the opportunity to screen several areas of the same nail plate and to detect fungal elements during local or systemic therapy.
This study clearly demonstrates the benefits of high-resolution OCT for identifying living tissue structure and morphology. Compared with the current gold standard histology, OCT offers non-destructive tissue imaging, enabling high-resolution evaluation of living tissue morphology and structure as it evolves.
Ocular irritation testing is a common requirement for the classification, labelling and packaging of chemicals (substances and mixtures). The in vivo Draize rabbit eye test (OECD Test Guideline 405) is considered to be the regulatory reference method for the classification of chemicals according to their potential to induce eye injury. In the Draize test, chemicals are applied to rabbit eyes in vivo, and changes are monitored over time. If no damage is observed, the chemical is not categorised. Otherwise, the classification depends on the severity and reversibility of the damage. Alternative test methods have to be designed to match the classifications from the in vivo reference method. However, observation of damage reversibility is usually not possible in vitro. Within the present study, a new organotypic method based on rabbit corneas obtained from food production is demonstrated to close this gap. The Ex Vivo Eye Irritation Test (EVEIT) retains the full biochemical activity of the corneal epithelium, epithelial stem cells and endothelium. This permits the in-depth analysis of ocular chemical trauma beyond that achievable by using established in vitro methods. In particular, the EVEIT is the first test to permit the direct monitoring of recovery of all corneal layers after damage. To develop a prediction model for the EVEIT that is comparable to the GHS system, 37 reference chemicals were analysed. The experimental data were used to derive a three-level potency ranking of eye irritation and corrosion that best fits the GHS categorisation. In vivo data available in the literature were used for comparison. When compared with GHS classification predictions, the overall accuracy of the three-level potency ranking was 78%. The classification of chemicals as irritating versus non-irritating resulted in 96% sensitivity, 91% specificity and 95% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.