Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials including proteins, synthetic polymers, and ceramics to enhance its characteristics for a particular function. Overall, the diverse array of silk materials shows excellent bioresponses in vivo with low immunogenicity and the ability to be remodeled and replaced by native tissue making it suitable for numerous clinical applications.
Single nucleotide polymorphisms (SNPs) within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P genes have been associated with natural variation of pigmentation traits in human populations. Here, we describe the characterization of human primary melanocytic cells genotyped for polymorphisms within the MATP, NCKX5, or OCA2 loci. On the basis of genotype, these cultured cells reflect the phenotypes observed by others in terms of both melanin content and tyrosinase (TYR) activity when comparing skin designated as either "White" or "Black". We found a statistically significant association of MATP-374L (darker skin) with higher TYR protein abundance that was not observed for any NCKX5-111 or OCA2 rs12913832 allele. MATP-374L/L homozygous strains displayed significantly lower MATP transcript levels compared to MATP-374F/F homozygous cells, but this did not reach statistical significance based on NCKX5 or OCA2 genotype. Similarly, we observed significantly increased levels of OCA2 mRNA in rs12913832-T (brown eye) homozygotes compared to rs12913832-C (blue eye) homozygous strains, which was not observed for MATP or NCKX5 gene transcripts. In genotype-phenotype associations performed on a collection of 226 southern European individuals using these same SNPs, we were able to show strong correlations in MATP-L374F, OCA2, and melanocortin-1 receptor with skin, eye, and hair color variation, respectively.
The use of adherent monolayer cultures have produced many insights into melanoma cell growth and differentiation, but often novel therapeutics demonstrated to act on these cells are not active in vivo. It is imperative that new methods of growing melanoma cells that reflect growth in vivo are investigated. To this end, a range of human melanoma cell lines passaged as adherent cultures or induced to form melanoma spheres (melanospheres) in stem cell media have been studied to compare cellular characteristics and protein expression. Melanoma spheres and tumours grown from cell lines as mouse xenografts had increased heterogeneity when compared to adherent cells and 3D-spheroids in agar (aggregates). Furthermore, cells within the melanoma spheres and mouse xenografts each displayed a high level of reciprocal BRN2 or MITF expression, which matched more closely the pattern seen in human melanoma tumours in situ, rather than the propensity for co-expression of these important melanocytic transcription factors seen in adherent cells and 3D-spheroids. Notably, when the levels of the BRN2 and MITF proteins were each independently repressed using siRNA treatment of adherent melanoma cells, members of the NOTCH pathway responded by decreasing or increasing expression respectively. This links BRN2 as an activator and conversely MITF as a repressor of the NOTCH pathway in melanoma cells. Loss of the BRN2-MITF axis in antisense ablated cell lines decreased melanoma sphere forming capability, cell adhesion during 3D-spheroid formation, and invasion through a collagen matrix. Combined, this evidence suggests that the melanoma sphere culture system induces subpopulations of cells that may more accurately portray the in vivo disease, than growth as adherent melanoma cells.
has filed patents relating to genetic testing and therapy development aimed at the filaggrin gene. ACKNOWLEDGMENTSWe thank the patients and their families for their participation. We also thank Ai Hayakawa for the fine technical assistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.