The human melanocortin-1 receptor gene (MC1R) encodes a G-protein coupled receptor that is primarily expressed on melanocytes, where it plays a key role in pigmentation regulation. Variant alleles are associated with red hair colour and fair skin, known as the RHC phenotype, as well as skin cancer risk. The R151C, R160W and D294H alleles, designated 'R', are strongly associated with the RHC phenotype and have been proposed to result in loss of function receptors due to impaired G-protein coupling. We recently provided evidence that the R151C and R160W variants can efficiently couple to G-proteins in response to alpha-melanocyte stimulating hormone. The possibility that altered cellular localization of the R151C and R160W variant receptors could underlie their association with RHC was therefore considered. Using immunofluorescence and ligand binding studies, we found that melanocytic cells exogenously or endogenously expressing MC1R show strong surface localization of the wild-type and D294H alleles but markedly reduced cell surface expression of the R151C and R160W receptors. In additional exogenous expression studies, the R variant D84E and the rare I155T variant, also demonstrated a significant reduction in plasma membrane receptor numbers. The V60L, V92M and R163Q weakly associated RHC alleles, designated 'r', were expressed with normal or intermediate cell surface receptor levels. These results indicate that reduced receptor coupling activity may not be the only contributing factor to the genetic association between the MC1R variants and the RHC phenotype, with MC1R polymorphisms now linked to a change in receptor localization.
Single nucleotide polymorphisms (SNPs) within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P genes have been associated with natural variation of pigmentation traits in human populations. Here, we describe the characterization of human primary melanocytic cells genotyped for polymorphisms within the MATP, NCKX5, or OCA2 loci. On the basis of genotype, these cultured cells reflect the phenotypes observed by others in terms of both melanin content and tyrosinase (TYR) activity when comparing skin designated as either "White" or "Black". We found a statistically significant association of MATP-374L (darker skin) with higher TYR protein abundance that was not observed for any NCKX5-111 or OCA2 rs12913832 allele. MATP-374L/L homozygous strains displayed significantly lower MATP transcript levels compared to MATP-374F/F homozygous cells, but this did not reach statistical significance based on NCKX5 or OCA2 genotype. Similarly, we observed significantly increased levels of OCA2 mRNA in rs12913832-T (brown eye) homozygotes compared to rs12913832-C (blue eye) homozygous strains, which was not observed for MATP or NCKX5 gene transcripts. In genotype-phenotype associations performed on a collection of 226 southern European individuals using these same SNPs, we were able to show strong correlations in MATP-L374F, OCA2, and melanocortin-1 receptor with skin, eye, and hair color variation, respectively.
The use of adherent monolayer cultures have produced many insights into melanoma cell growth and differentiation, but often novel therapeutics demonstrated to act on these cells are not active in vivo. It is imperative that new methods of growing melanoma cells that reflect growth in vivo are investigated. To this end, a range of human melanoma cell lines passaged as adherent cultures or induced to form melanoma spheres (melanospheres) in stem cell media have been studied to compare cellular characteristics and protein expression. Melanoma spheres and tumours grown from cell lines as mouse xenografts had increased heterogeneity when compared to adherent cells and 3D-spheroids in agar (aggregates). Furthermore, cells within the melanoma spheres and mouse xenografts each displayed a high level of reciprocal BRN2 or MITF expression, which matched more closely the pattern seen in human melanoma tumours in situ, rather than the propensity for co-expression of these important melanocytic transcription factors seen in adherent cells and 3D-spheroids. Notably, when the levels of the BRN2 and MITF proteins were each independently repressed using siRNA treatment of adherent melanoma cells, members of the NOTCH pathway responded by decreasing or increasing expression respectively. This links BRN2 as an activator and conversely MITF as a repressor of the NOTCH pathway in melanoma cells. Loss of the BRN2-MITF axis in antisense ablated cell lines decreased melanoma sphere forming capability, cell adhesion during 3D-spheroid formation, and invasion through a collagen matrix. Combined, this evidence suggests that the melanoma sphere culture system induces subpopulations of cells that may more accurately portray the in vivo disease, than growth as adherent melanoma cells.
We have examined melanocortin-1 receptor (MC1R) variant allele frequencies in the general population and in a collection of adolescent dizygotic and monozygotic twins to determine statistical associations of pigmentation phenotypes with increased skin cancer risk. This included hair and skin color, freckling, mole count and sun exposed skin reflectance. Nine variants were studied and designated as either strong R (OR = 63; 95% CI 32-140) or weak r (OR = 5; 95% CI 3-11) red hair alleles. Penetrance of each MC1R variant allele was consistent with an allelic model where effects were multiplicative for red hair but additive for skin reflectance. To assess the interaction of the brown eye color gene BEY2/OCA2 on the phenotypic effects of variant MC1R alleles we imputed OCA2 genotype in the twin collection. A modifying effect of OCA2 on MC1R variant alleles was seen on constitutive skin color, freckling and mole count. In order to study the individual effects of these variants on pigmentation phenotype we have established a series of human primary melanocyte strains genotyped for the MC1R receptor. These include strains which are MC1R wild-type consensus, variant heterozygotes, and homozygotes for strong R alleles Arg151Cys and Arg160Trp. Ultrastructural analysis demonstrated that only consensus strains contained stage III and IV melanosomes in their terminal dendrites whereas Arg151Cys and Arg160Trp homozygous strains contained only immature stage I and II melanosomes. Such genetic association studies combined with the functional analysis of MC1R variant alleles in melanocytic cells should provide a link in understanding the association between pigmentary phototypes and skin cancer risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.