The viruses circulating among Antarctic wildlife remain largely unknown. In an effort to identify viruses associated with Weddell seals (Leptonychotes weddellii) inhabiting the Ross Sea, vaginal and nasal swabs, and faecal samples were collected between November 2014 and February 2015. In addition, a Weddell seal kidney and South Polar skua (Stercorarius maccormicki) faeces were opportunistically sampled. Using high throughput sequencing, we identified and recovered 152 anellovirus genomes that share 63–70% genome-wide identities with other pinniped anelloviruses. Genome-wide pairwise comparisons coupled with phylogenetic analysis revealed two novel anellovirus species, tentatively named torque teno Leptonychotes weddellii virus (TTLwV) -1 and -2. TTLwV-1 (n = 133, genomes encompassing 40 genotypes) is highly recombinant, whereas TTLwV-2 (n = 19, genomes encompassing three genotypes) is relatively less recombinant. This study documents ubiquitous TTLwVs among Weddell seals in Antarctica with frequent co-infection by multiple genotypes, however, the role these anelloviruses play in seal health remains unknown.
For polar marine mammals, the energetic cost of thermoregulation depends on ambient conditions in the highly variable surrounding environment. Heat conservation strategies used by pinnipeds to reduce total heat loss include small surface area to volume ratios, the ability to limit perfusion and thick subcutaneous blubber layers. There are limits to how cool the skin surface may remain without compromising function, especially during the annual pelage molt, when hair and skin are replaced. To determine if actively molting seals incur higher thermoregulatory costs, surface temperature (ST) and heat flux (HF) were measured in 93 adult female Weddell seals (Leptonychotes weddellii) both prior to and during the active molting period using direct sensors and infrared imaging. Linear mixed-effect models revealed that ST increased significantly with increased ambient temperature and decreased wind speed (contributing 44.6 and 41.7% of the attributed variance, respectively). Seal STs were not impacted by molt status, but were maintained at 11.2 ± 0.3°C warmer than the ambient temperature. Infrared imaging results averaged 15.1 ± 1.4°C warmer than direct ST measurements. In contrast, HF was significantly higher in seals in early molting stages compared to the pre-molt season ( P < 0.001) and molt status accounted for 66.5% of the variance in HF. Thermoregulatory costs calculated from estimated basal metabolic rate and measured HF were more than double for molting seals as compared to those in pre-molt. This suggests that perfusion is increased during molt to support follicle development, despite the increased energetic costs associated with higher HF rates. Because ST, HF and thermoregulatory costs are strongly influenced by ambient conditions, molt timing is likely under selective pressure to occur during the warmest period of the year. Shifts in environmental conditions that delay molt phenology or increase HF rates could negatively impact seal populations by further increasing thermoregulatory costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.