Key Points Ibrutinib is the first clinically viable irreversible ITK inhibitor. Ibrutinib inhibits the formation of Th2 but not Th1 immunity.
Therapeutic targeting of Bruton tyrosine kinase (BTK) with ibrutinib in chronic lymphocytic leukemia has led to a paradigm shift in therapy, and relapse has been uncommon with current follow-up. Acquired mutations in BTK and PLCG2 can cause relapse, but data regarding the prevalence and natural history of these mutations are limited. Patients and MethodsPatients accrued to four sequential studies of ibrutinib were included in these analyses. Deep sequencing for BTK and PLCG2 was performed retrospectively on patients who experienced relapse and prospectively on a screening population. ResultsWith a median follow-up time of 3.4 years, the estimated cumulative incidence of progression at 4 years is 19% (95% CI, 14% to 24%). Baseline karyotypic complexity, presence of del(17)(p13.1), and age less than 65 years were risk factors for progression. Among patients who experienced relapse, acquired mutations of BTK or PLCG2 were found in 85% (95% CI, 71% to 94%), and these mutations were detected an estimated median of 9.3 months (95% CI, 7.6 to 11.7 months) before relapse. Of a group of 112 patients examined prospectively, eight patients have experienced relapse, and all of these patients had acquired resistance mutations before relapse. A resistance mutation was detected in an additional eight patients who have not yet met criteria for clinical relapse. ConclusionRelapse of chronic lymphocytic leukemia after ibrutinib is an issue of increasing clinical significance. We show that mutations in BTK and PLCG2 appear early and have the potential to be used as a biomarker for future relapse, suggesting an opportunity for intervention.
This paper applies topological methods to study complex high dimensional data sets by extracting shapes (patterns) and obtaining insights about them. Our method combines the best features of existing standard methodologies such as principal component and cluster analyses to provide a geometric representation of complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis of relationships between related data sets. We illustrate the use of our method by applying it to three very different kinds of data, namely gene expression from breast tumors, voting data from the United States House of Representatives and player performance data from the NBA, in each case finding stratifications of the data which are more refined than those produced by standard methods.
BACKGROUND.Ibrutinib has been shown to have immunomodulatory effects by inhibiting Bruton's tyrosine kinase (BTK) and IL-2-inducible T cell kinase (ITK). The relative importance of inhibiting these 2 kinases has not been examined despite its relevance to immune-based therapies. METHODS.Peripheral blood mononuclear cells from chronic lymphocytic leukemia (CLL) patients on clinical trials of ibrutinib (BTK/ITK inhibitor; n = 19) or acalabrutinib (selective BTK inhibitor; n = 13) were collected serially. T cell phenotype, immune function, and CLL cell immunosuppressive capacity were evaluated. RESULTS. Ibrutinib markedly increased CD4+ and CD8 + T cell numbers in CLL patients. This effect was more prominent in effector/effector memory subsets and was not observed with acalabrutinib. Ex vivo studies demonstrated that this may be due to diminished activation-induced cell death through ITK inhibition. PD-1 and CTLA-4 expression was significantly markedly reduced in T cells by both agents. While the number of Treg cells remained unchanged, the ratio of these to conventional CD4 + T cells was reduced with ibrutinib, but not acalabrutinib. Both agents reduced expression of the immunosuppressive molecules CD200 and BTLA as well as IL-10 production by CLL cells. CONCLUSIONS. Ibrutinib treatment increased the in vivo persistence of activated T cells, decreased the Treg/CD4+ T cell ratio, and diminished the immune-suppressive properties of CLL cells through BTK-dependent and -independent mechanisms. These features provide a strong rationale for combination immunotherapy approaches with ibrutinib in CLL and other cancers. TRIAL REGISTRATION. ClinicalTrials.gov NCT01589302 and NCT02029443. Samples described here were collected per OSU-0025.
Inhibition of Bruton's tyrosine kinase (BTK) with the irreversible inhibitor ibrutinib has emerged as a transformative treatment option for patients with chronic lymphocytic leukemia (CLL) and other B-cell malignancies, yet >80% of CLL patients develop resistance due to a cysteine to serine mutation at the site covalently bound by ibrutinib (C481S). Currently, an effective treatment option for C481S patients exhibiting relapse to ibrutinib does not exist, and these patients have poor outcomes. To address this, we have developed a PROteolysis TArgeting Chimera (PROTAC) that induces degradation of both wild-type and C481S mutant BTK. We selected a lead PROTAC, MT-802, from several candidates on the basis of its potency to induce BTK knockdown. MT-802 recruits BTK to the cereblon E3 ubiquitin ligase complex to trigger BTK ubiquitination and degradation via the proteasome. MT-802 binds fewer off-target kinases than ibrutinib does and retains an equivalent potency (>99% degradation at nanomolar concentrations) against wild-type and C481S BTK. In cells isolated from CLL patients with the C481S mutation, MT-802 is able to reduce the pool of active, phosphorylated BTK whereas ibrutinib cannot. Collectively, these data provide a basis for further preclinical study of BTK PROTACs as a novel strategy for treatment of C481S mutant CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.