Key messageSNPs in candidate genesPain-1,InvCD141(invertases),SSIV(starch synthase),StCDF1(transcription factor),LapN(leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield.AbstractTuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker–trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker–trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-016-2665-7) contains supplementary material, which is available to authorized users.
Red band needle blight caused by Dothistroma septosporum and D. pini, and brown spot needle blight caused by Lecanosticta acicola provoke severe and premature defoliation in Pinus, and subsequent reduction of photosynthetic surfaces, vitality, and growth in young and adult trees. The recurrent damage results in branch and tree death. Until recently, pine needle blight diseases have had only minor impacts on native and exotic forest trees in the North of Spain, but in the past five years, these pathogen species have spread widely and caused severe defoliation and mortality in exotic and native plantations of Pinus in locations where they were not detected before. In an attempt to understand the main causes of this outbreak and to define the effectiveness of owners' management strategies, four research actions were implemented: a survey of the management activities implemented by the owners to reduce disease impact, the evaluation of specific symptoms and damage associated with infection, and the identification of the causative pathogenic species and their reproductive capacity. Morphological characteristics of the fungus and molecular identification were consistent with those of Lecanosticta acicola and Dothistroma spp., D. septosporum, D. Pini, and both mating types were present for the three identified pathogens. The local silvicultural management performed, mainly pruning and thinning, was not resulting in the expected improvement. The results of this study can be applied to establish guidelines for monitoring and controlling the spread of needle blight pathogens.
Based on an F(1) progeny of 73 individuals, two parental maps were constructed according to the double pseudo-test cross strategy. The paternal map contained 16 linkage groups for a total genetic length of 1,792 cM. The maternal map covered 1,920 cM, and consisted of 12 linkage groups. These parental maps were then integrated using 66 intercross markers. The resulting consensus map covered 2,035 cM and included 755 markers (661 AFLPs, 74 SSRs, 18 ESTPs, the 5S rDNA and the early cone formation trait) on 12 linkage groups, reflecting the haploid number of chromosomes of Picea abies. The average spacing between two adjacent markers was 2.6 cM. The presence of 39 of the SSR and/or ESTP markers from this consensus map on other published maps of different Picea and Pinus species allowed us to establish partial linkage group homologies across three P. abies maps (up to five common markers per linkage group). This first saturated linkage map of P. abies could be therefore used as a support for developing comparative genome mapping in conifers.
Background: Pollutants and other stressing factors like mold infection might increase the production of pathogen-related proteins in plants. Since this is invoked as one of the causes for the high prevalence of allergic diseases in developed countries, we aimed to determine the potential effect of environmental pollution, with or without mold infection of the trees, on the allergenic potency of pine pollen (Pinus radiata). Methods: Pine pollen samples were recovered from three selected areas: low polluted (A), highly polluted (B) and highly polluted and infected with fungi (Spheropsis sapinea) (C). The allergenic potency of pollen from areas A, B or C were compared in vivo in 35 pine pollen-allergic patients by skin prick test and specific IgE (sIgE) quantification. Pollen was also analyzed in vitro by SDS-PAGE immunoblotting, RAST inhibition and cDNA-AFLP (amplified fragment length polymorphism) to compare differences in proteins and mRNA expression. Results: The allergenic potency measured by prick test, sIgE and RAST inhibition was greater in pollen A, which was exposed to smaller amounts of NOx, PM10 and SO2 but greater amounts of O3. No differences were found in IgE-binding bands in immunoblotting or densitometry of the bands. In cDNA-AFLP, three homologous transcript-derived fragments were expressed in samples B only, with an expressed sequence tag related with stress-regulated gene expression. Conclusions: A greater allergenic potency, in terms of skin tests and sIgE, is observed in pine pollen coming from unpolluted areas. We consider that this fact might be related to a higher exposure to ozone, resulting in a greater expression of allergenic proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.