Abstract. Rift Valley fever (RVF) is a mosquito-borne disease caused by the RiftValley fever virus (RVFV). Rift Valley fever affects a large number of species, including human, and has severe impact on public health and the economy, especially in African countries. The present study examined the vector competence of three different European mosquito species, Culex pipiens (Linnaeus, 1758) form molestus (Diptera: Culicidae), Culex pipiens hybrid form and Stegomyia albopicta (= Aedes albopictus) (Skuse, 1894) (Diptera: Culicidae). Mosquitoes were artificially fed with blood containing RVFV. Infection, disseminated infection and transmission efficiency were evaluated. This is the first study to assess the transmission efficiency of European mosquito species using a virulent RVFV strain. The virus disseminated in Cx. pipiens hybrid form and in S. albopicta. Moreover, infectious viral particles were isolated from saliva of both species, showing their RVFV transmission capacity. The presence of competent Cx. pipiens and S. albopicta in Spain indicates that an autochthonous outbreak of RVF may occur if the virus is introduced. These findings provide information that will help health authorities to set up efficient entomological surveillance and RVFV vector control programmes.
BackgroundRift Valley fever is a mosquito-borne zoonotic disease that affects domestic ruminants and humans. Culex flavivirus is an insect-specific flavivirus that naturally exists in field mosquito populations. The influence of Culex flavivirus on Rift Valley fever phlebovirus (RVFV) vector competence of Culex pipiens has not been investigated.MethodsCulex flavivirus infection in a Cx. pipiens colony was studied by Culex flavivirus oral feeding and intrathoracical inoculation. Similarly, vector competence of Cx. pipiens infected with Culex flavivirus was evaluated for RVFV. Infection, dissemination, transmission rates and transmission efficiency of Culex flavivirus-infected and non-infected Cx. pipiens artificially fed with RVFV infected blood were assessed.ResultsCulex flavivirus was able to infect Cx. pipiens after intrathoracically inoculation in Cx. pipiens mosquitos but not after Culex flavivirus oral feeding. Culex flavivirus did not affect RVFV infection, dissemination and transmission in Cx. pipiens mosquitoes. RVFV could be detected from saliva of both the Culex flavivirus-positive and negative Cx. pipiens females without significant differences. Moreover, RVFV did not interfere with the Culex flavivirus infection in Cx. pipiens mosquitoes.ConclusionsCulex flavivirus infected and non-infected Cx. pipiens transmit RVFV. Culex flavivirus existing in field-collected Cx. pipiens populations does not affect their vector competence for RVFV. Culex flavivirus may not be an efficient tool for RVFV control in mosquitoes.
Background Aedes vexans (Meigen) is considered a nuisance species in central Europe and the Mediterranean region. It is an anthropophilic and mammalophilic floodwater mosquito involved in the transmission of several arboviruses. Rift Valley fever (RVF) is a relevant mosquito-borne zoonosis, affecting mainly humans and ruminants, that causes severe impact in public health and economic loses. Due to globalization and climate change, the European continent is threatened by its introduction. The main purpose of the present study was to evaluate the vector competence of a European field-collected Ae. vexans population. Methods Aedes vexans field-collected larvae were reared in the laboratory under field-simulated conditions. To assess the vector competence for Rift Valley fever phlebovirus (RVFV) transmission, adult F0 females were exposed to infectious blood meals containing the 56/74 RVFV strain. Additionally, intrathoracic inoculations with the same virus strain were performed to evaluate the relevance of the salivary gland barriers. Natural circulation of alphavirus, flavivirus and phlebovirus was also tested. Results To our knowledge, an autochthonous Ae. vexans population was experimentally confirmed as a competent vector for RVFV for the first time. This virus was capable of infecting and disseminating within the studied Ae. vexans mosquitoes. Moreover, infectious virus was isolated from the saliva of disseminated specimens, showing their capacity to transmit the virus. Additionally, a natural infection with a circulating Mosquito flavivirus was detected. The co-infection with the Mosquito flavivirus seemed to modulate RVFV infection susceptibility in field-collected Ae. vexans, but further studies are needed to confirm its potential interference in RVFV transmission. Conclusions Our results show that field-collected European Ae. vexans would be able to transmit RVFV in case of introduction into the continent. This should be taken into consideration in the design of surveillance and control programmes.
Background: Historically, Anopheles atroparvus has been considered one of the most important malaria vectors in Europe. Since malaria was eradicated from the European continent, the interest in studying its vectors reduced significantly. Currently, to better assess the potential risk of malaria resurgence on the continent, there is a growing need to update the data on susceptibility of indigenous Anopheles populations to imported Plasmodium species. In order to do this, as a first step, an adequate laboratory colony of An. atroparvus is needed. Methods: Anopheles atroparvus mosquitoes were captured in rice fields from the Ebro Delta (Spain). Field-caught specimens were maintained in the laboratory under simulated field-summer conditions. Adult females were artificially blood-fed on fresh whole rabbit blood for oviposition. First-to fourth-instar larvae were fed on pulverized fish and turtle food. Adults were maintained with a 10% sucrose solution ad libitum. Results: An An. atroparvus population from the Ebro Delta was successfully established in the laboratory. During the colonization process, feeding and hatching rates increased, while a reduction in larval mortality rate was observed. Conclusions: The present study provides a detailed rearing and maintenance protocol for An. atroparvus and a publicly available reference mosquito strain within the INFRAVEC2 project for further research studies involving vectorparasite interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.