Allergic contact dermatitis is a common occupational disease that manifests as a cell-mediated hypersensitivity reaction following skin exposure to small reactive chemicals termed haptens. Haptens penetrate the stratum corneum and covalently modify proteins in the epidermis, inducing intracellular stress, which further leads to the release of damage-associated molecular patterns (DAMPs), such as uric acid, reactive oxygen species, hyaluronic acid fragments and extracellular adenosine triphosphate (ATP). These DAMPs are recognized by pattern recognition receptors (PRRs) in innate immune cells, namely dendritic cells (DCs), leading to their maturation and migration to the draining lymph nodes where they activate naïve T lymphocytes. Among all PRRs, several studies emphasize the role of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome on the allergic contact dermatitis (ACD) sensitization phase. However, skin allergens—danger signals—NLRP3 inflammasome axis is yet to be completely elucidated. Therefore, in this review, we sought to discuss the molecular mechanisms underlying DAMPs release and NLRP3 inflammasome activation triggered by skin allergens. The elucidation of these key events might help to identify novel therapeutic strategies for ACD, as well as the development of nonanimal alternative methods for the identification and potency categorization of skin sensitizers.
The novel coronavirus disease
2019
(Covid‐19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid‐19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17β‐estradiol during Covid‐19, which might help explain why women appear less likely to die from Covid‐19 than men. 17β‐estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor β, and G protein‐coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen‐presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen‐specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho‐alveolar lavage fluids from Covid‐19 patients has already been reported. Here we will describe how SARS‐CoV‐2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid‐19, and explore clinical trials regarding Covid‐19
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.