Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as mechanical properties, surface characteristics, biodegradability, biocompatibility, and porosity. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion additive manufacturing system to produce PCL/pristine graphene scaffolds for bone tissue applications. PCL/pristine graphene blends were prepared using a melt blending process. Scaffolds with regular and reproducible architecture were produced with different concentrations of pristine graphene. Scaffolds were evaluated from morphological, mechanical, and biological view. The results suggest that the addition of pristine graphene improves the mechanical performance of the scaffolds, reduces the hydrophobicity, and improves cell viability and proliferation.
There is increasing focus on the development of bioactive scaffolds for tissue engineering and regenerative medicine that mimic the native nanofibrillar extracellular matrix. Solution blow spinning (SBS) is a rapid, simple technique that produces nanofibers with open fiber networks for enhanced cell infiltration. In this work, highly porous bioactive fibers were produced by combining SBS with thermally induced phase separation. Fibers composed of poly(d,l-lactide) (PLA) and dimethyl carbonate were sprayed directly into a cryogenic environment and subsequently lyophilized, rendering them highly porous. The surface areas of the porous fibers were an order of magnitude higher in comparison with smooth control fibers of the same diameter (43.5 m2·g–1 for porous fibers produced from 15% w/v PLA in dimethyl carbonate) and exhibited elongated surface pores. Macroporous scaffolds were produced by spraying water droplets simultaneously with fiber formation, creating a network of fibers and ice microspheres, which act as in situ macroporosifiers. Subsequent lyophilization resulted in three-dimensional (3D) scaffolds formed of porous nanofibers with interconnected macropores due to the presence of the ice spheres. Nanobioactive glass was incorporated for the production of 3D macroporous, bioactive, therapeutic-ion-releasing scaffolds with potential applications in non-load-bearing bone tissue engineering. The bioactive characteristics of the fibers were assessed in vitro through immersion in simulated body fluid. The release of soluble silica ions was faster for the porous fibers within the first 24 h, with confirmation of hydroxyapatite on the fiber surface within 84 h.
In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries.
In this study, we investigated the mechanical response of polylactide (PLLA) reinforced with multiple layers of BC nanopaper. Laminated composites consisting of 1, 3, 6 and 12 sheet(s) of BC nanopaper were produced. It was observed that increasing the number of BC nanopaper led to an increase in the porosity of the resulting BC nanopaper-reinforced PLLA laminated composites. The tensile moduli of the laminated composites were found to be ~12.5-13.5 GPa, insensitive to the number of sheets of BC nanopaper in the composites. However, the tensile strength of the laminated composites decreased by up to 25% (from 121 MPa to 95 MPa) when the number of reinforcing BC nanopaper sheets increased from 1 to 12 sheets. This was attributed to the presence and severity of the scale-induced defects increased with increasing BC nanopaper sheets in the PLLA laminated composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.