The standard rapid approach for the diagnosis of coronavirus disease 2019 (COVID-19) is the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. The detection of specific anti-SARS-CoV-2 immunoglobulins is crucial for screening people who have been exposed to the virus, whether or not they presented symptoms. Recent publications report different methods for the detection of specific IgGs, IgMs, and IgAs against SARS-CoV-2; these methods mainly detect immunoglobulins in the serum using conventional techniques such as rapid lateral flow tests or enzyme-linked immunosorbent assay (ELISA). In this article, we report the production of recombinant SARS-CoV-2 spike protein and the development of a rapid, reliable, cost-effective test, capable of detecting immunoglobulins in serum and saliva samples. This method is based on interferometric optical detection. The results obtained using this method and those obtained using ELISA were compared. Owing to its low cost and simplicity, this test can be used periodically for the early detection, surveillance, detection of immunity, and control of the spread of COVID-19.
The production of pigments by bacterial colonies has sparked interest among bacteriologists since the 19th century, whether for taxonomy or, in the case of carotenoids for their association with antibiotics resistance. Mycobacteria have gained a very special place in the bacterial world due to their clinical importance. Alone, Mycobacterium tuberculosis is responsible for about two million deaths annually worldwide making tuberculosis one of the most influential diseases in the history of mankind. Almost half of the Nontuberculous Mycobacteria species identified are associated with opportunistic infections in animals and humans. Mycobacterial pigmentary characteristics started to be documented about 80 years ago; but to date, their main use has been only for limited taxonomic and identification purposes. While mycobacterial pigments, especially carotenoids have been clearly associated with cellular photoprotection and survival, the regulation of their production and their physiological role have been largely unstudied. Recent advances in deciphering mycobacterial genomes and characterization of carotenoid synthesis genes, combined with an urgent need for innovative approaches to understand Mycobacterium tuberculosis pathogenic properties open new avenues for exciting research opportunities that might lead to new therapeutic strategies against a devastating secular disease. © 2011 IUBMB IUBMB Life, 63(2): 71–78, 2011
Despite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market. To this end, we explored a methodology for searching articles and patents to obtain an indicator that relates to both. This figure of merit to estimate this transfer is based on classifying the relevant research articles in the area and the patents that have been generated from these ones. To delimit the scope of this study, we researched the results of a large enough number of publications in the period from 2015 to 2020, by using keywords “biosensor”, “optic”, and “device” to obtain the most representative articles from Web of Science and Scopus. Then, we classified them according to a particular classification of the optical PoC devices. Once we had this sampling frame, we defined a patent search strategy to cross-link the article with a registered patent (by surfing Google Patents) and classified them accordingly to the categories described. Finally, we proposed a relative figure called Index of Technology Transference (IoTT), which estimates to what extent our findings in science materialized in published articles are protected by patent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.