Over 125 pigmentation-related genes have been identified to date. Of those, PMEL17/GP100 has been widely studied as a melanoma-specific antigen as well as a protein required for the formation of fibrils in melanosomes. PMEL17 is synthesized, glycosylated, processed, and delivered to melanosomes, allowing them to mature from amorphous round vesicles to elongated fibrillar structures. In contrast to other melanosomal proteins such as TYR and TYRP1, the processing and sorting of PMEL17 is highly complex. Monoclonal antibody HMB45 is commonly used for melanoma detection, but has the added advantage that it specifically reacts with sialylated PMEL17 in the fibrillar matrix in melanosomes. In this study, we generated mutant forms of PMEL17 to clarify the subdomain of PMEL17 required for formation of the fibrillar matrix, a process critical to pigmentation. The internal proline/serine/threonine-rich repeat domain (called the RPT domain) of PMEL17 undergoes variable proteolytic cleavage. Deletion of the RPT domain abolished its recognition by HMB45 and its capacity to form fibrils. Truncation of the C-terminal domain did not significantly affect the processing or trafficking of PMEL17, but, in contrast, deletion of the N-terminal domain abrogated both. We conclude that the RPT domain is essential for its function in generating the fibrillar matrix of melanosomes and that the luminal domain is necessary for its correct processing and trafficking to those organelles.
Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma͞KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an Ϸ8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells.cancer ͉ melanosomes ͉ skin ͉ tumor therapy ͉ multidrug resistance
The epidermis (containing primarily keratinocytes and melanocytes) overlies the dermis (containing primarily fibroblasts) of human skin. We previously reported that dickkopf 1 (DKK1) secreted by fibroblasts in the dermis elicits the hypopigmented phenotype of palmoplantar skin due to suppression of melanocyte function and growth via the regulation of two important signaling factors, microphthalmia-associated transcription factor (MITF) and beta-catenin. We now report that treatment of keratinocytes with DKK1 increases their proliferation and decreases their uptake of melanin and that treatment of reconstructed skin with DKK1 induces a thicker and less pigmented epidermis. DNA microarray analysis revealed many genes regulated by DKK1, and several with critical expression patterns were validated by reverse transcriptase-polymerase chain reaction and Western blotting. DKK1 induced the expression of keratin 9 and alpha-Kelch-like ECT2 interacting protein (alphaKLEIP) but down-regulated the expression of beta-catenin, glycogen synthase kinase 3beta, protein kinase C, and proteinase-activated receptor-2 (PAR-2), which is consistent with the expression patterns of those proteins in human palmoplantar skin. Treatment of reconstructed skin with DKK1 reproduced the expression patterns of those key proteins observed in palmoplantar skin. These findings further elucidate why human skin is thicker and paler on the palms and soles than on the trunk through topographical and site-specific differences in the secretion of DKK1 by dermal fibroblasts that affects the overlying epidermis.
The constitutive color of our skin plays a dramatic role in our photoprotection from solar ultraviolet radiation (UVR) that reaches the Earth and in minimizing DNA damage that gives rise to skin cancer. More than 120 genes have been identified and shown to regulate pigmentation, one of the key genes being melanocortin 1 receptor (MC1R) that encodes the melanocortin 1 receptor (MC1R), a seven-transmembrane G protein-coupled receptor expressed on the surface of melanocytes. Modulation of MC1R function regulates melanin synthesis by melanocytes qualitatively and quantitatively. The MC1R is regulated by the physiological agonists alpha-melanocyte-stimulating hormone (alphaMSH) and adrenocorticotropic hormone (ACTH), and antagonist agouti signaling protein (ASP). Activation of the MC1R by binding of an agonist stimulates the synthesis of eumelanin primarily via activation of adenylate cyclase. The significance of cutaneous pigmentation lies in the photoprotective effect of melanin, particularly eumelanin, against sun-induced carcinogenesis. Epidermal melanocytes and keratinocytes respond to UVR by increasing their expression of alphaMSH and ACTH, which up-regulate the expression of MC1R, and consequently enhance the response of melanocytes to melanocortins. Constitutive skin pigmentation dramatically affects the incidence of skin cancer. The pigmentary phenotype characterized by red hair, fair complexion, inability to tan and tendency to freckle is an independent risk factor for all skin cancers, including melanoma. The MC1R gene is highly polymorphic in human populations, and allelic variation at this locus accounts, to a large extent, for the variation in pigmentary phenotypes and skin phototypes (SPT) in humans. Several allelic variants of the MC1R gene are associated with the red hair and fair skin (RHC) phenotype, and carrying one of these variants is thought to diminish the ability of the epidermis to respond to DNA damage elicited by UVR. The MC1R gene is considered a melanoma susceptibility gene, and its significance in determining the risk for skin cancer is of tremendous interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.